SOFTWARE PROBLEMS OF AN EXPERIMENTAL ROBOT CONTROLLER BASED ON QNX REAL-TIME OPERATING SYSTEMS

At the Department of Automation and Applied Informatics an experimental robot control system has been developed. The purpose of this research is to study modern robot control algorithms and their realization in a real environment. The project focuses on the problems of multiprocessor systems including the task distribution and communication. Another field of this research is to integrate a six-component force-torque sensor into the robot control system and making use of this information in new robot control algorithms. Another purpose of this study is to examine the software problems of an IBM PC-based multiprocessor system controlling a NOKIA-PUMA 560 humanoid robot arm. The features and system services of the new QNX Neutrino operating system is presented in comparison with the previously used QNX v4. The main areas of the version upgrade will be shown focusing on the interprocess communication questions. The processing components of this multiprocessor robot control system with its external interfaces will be discussed later and some further system level development possibilities will be outlined. This final part of the study gives the summary of the architectural and communication requirements of a hybrid position and force control system in the above environment.