Remarkable metal-complexed phosphorus analogues of the cyclopropenylcarbene-cyclobutadiene rearrangement.

In situ-generated metal carbonyl-complexed cyclopropenylphosphinidenes undergo a sequence of structural changes leading to phosphorus analogues of Pettit's seminal (η(4)-cyclobutadiene)iron tricarbonyl complex via multiple valence isomers along the reaction pathway and the elimination of one molecule of carbon monoxide.

[1]  K. Lammertsma,et al.  Stereomutation of pentavalent compounds: validating the Berry pseudorotation, redressing Ugi's turnstile rotation, and revealing the two- and three-arm turnstiles. , 2010, Journal of the American Chemical Society.

[2]  K. Lammertsma,et al.  Reactive intermediates: a transient electrophilic phosphinidene caught in the act. , 2010, Chemistry.

[3]  A. Spek,et al.  A phosphorus analogue of Bis(eta4-cyclobutadiene)iron(0). , 2009, Angewandte Chemie.

[4]  Artur Michalak,et al.  A Combined Charge and Energy Decomposition Scheme for Bond Analysis. , 2009, Journal of chemical theory and computation.

[5]  F. Tham,et al.  The existence of two short-bond isomers for bicyclo[1.1.0]butane derivatives based on boron and phosphorus. , 2008, Angewandte Chemie.

[6]  F. Breher Stretching bonds in main group element compounds—Borderlines between biradicals and closed-shell species , 2007 .

[7]  A. Spek,et al.  3H-benzophosphepine complexes: versatile phosphinidene precursors. , 2005, Journal of the American Chemical Society.

[8]  M. Scheer,et al.  Beiträge zum Reaktionsverhalten von Phosphaalkinen gegenüber Übergangsmetallkomplexen — Synthese und Kristallstrukturanalyse von [(Ph3P)2Pt(η2‐PCMes)], [M(CO)3(η4‐P2C2Mes2)] (M = Fe, Ru), [Cp*Mo(CO)Cl(η4‐P2C2tBu2)] und [K(tol)2]2[Mn(CO)4{Mn(CO)3(η4‐P2C2tBu2)}2]2 , 2004 .

[9]  D. Bourissou,et al.  Sigma-bond stretching: a static approach for a dynamic process. , 2004, Angewandte Chemie.

[10]  D. Szieberth,et al.  Synthesis and structure of a 1,3-diphosphacyclobutadienediide: an aniomesolytic fragmentation of a 1,3-diphosphetane-2,4-diyl in solution. , 2004, Angewandte Chemie.

[11]  K. Lammertsma,et al.  Photodissociation of the phosphine-substituted transition metal carbonyl complexes Cr(CO)(5)L and Fe(CO)(4)L: a theoretical study. , 2003, Journal of the American Chemical Society.

[12]  D. Seyferth Cyclobutadiene)iron TricarbonylA Case of Theory before Experiment , 2003 .

[13]  A. Sekiguchi,et al.  Tetrakis(trimethylsilyl)tetrahedrane. , 2002, Journal of the American Chemical Society.

[14]  K. Lammertsma,et al.  Carbene-Like Chemistry of Phosphinidene Complexes − Reactions, Applications, and Mechanistic Insights , 2002 .

[15]  A. Marinetti,et al.  Electrophilic Terminal‐Phosphinidene Complexes: Versatile Phosphorus Analogues of Singlet Carbenes , 2001 .

[16]  G. Maier,et al.  Tetrakis(trimethylsilyl)cyclobutadiene and Tetrakis(trimethylsilyl)tetrahedrane , 2001 .

[17]  Michael A. Hofmann,et al.  Organophosphorus Compounds, Part 157;1 New Access to 1,3-Diphosphinines and their Valence Isomerization to Dewar-1,3-diphosphinines , 2001 .

[18]  Hidetoshi Watanabe,et al.  Synthesis and Characterization of a Cyclobutadiene Dianion Dilithium Salt: Evidence for Aromaticity , 2000 .

[19]  M. D. Francis,et al.  Novel Dirhodium Complexes Derived from Phosphaalkynes , 1999 .

[20]  G. Bertrand,et al.  From 2‐Phosphino‐2H‐Phosphirene to 1‐Phosphino‐1H‐Phosphirene, 1λ5,2λ3‐Diphosphete, and 1,2‐Dihydro‐1λ3,2λ3‐Diphosphete: an Experimental and Theoretical Study , 1999 .

[21]  T. Clark,et al.  Organophosphorus Compounds, 118. Reactions of 1‐Chloro‐1H‐phosphirenes with Nucleophiles , 1997 .

[22]  G. Bertrand,et al.  Synthesis of a 2H‐Azirine by [1 + 2] Cycloaddition of a Phosphinocarbene with a Nitrile and Its Ring‐Expansion to a 1,2λ5‐Azaphosphete , 1995 .

[23]  M. Regitz Organophosphorus compounds. 75 . Phosphaalkynes — new building blocks in heterocyclic chemistry , 1994 .

[24]  W. Schoeller,et al.  Aza‐ versus Phospha‐Substitution in Cyclobutadiene: A Theoretical Evaluation of Bonding Properties , 1993 .

[25]  D. Cram,et al.  The Taming of Cyclobutadiene , 1991 .

[26]  F. Langhauser,et al.  Cooligomerization of Phosphaalkynes and Alkynes in the Coordination Sphere of Rhodium Complexes , 1991 .

[27]  M. Fink,et al.  The thermal isomerization of a silacyclobutadiene to a cyclopropenylsilylene: evidence for a stable silylene in fluid solution , 1989 .

[28]  M. Regitz,et al.  Phosphaalkyne Cyclodimerization Using Iron Complexes , 1989 .

[29]  R. Gleiter,et al.  First Structure Analysis and Photoelectron Spectroscopic Investigation of an Azete and an Azete‐Cobalt Complex , 1988 .

[30]  G. Maier Tetrahedrane and Cyclobutadiene , 1988 .

[31]  M. Fink,et al.  Silacyclobutadienes: generation of 1-mesityl-2,3,4-tri-tert-butyl-1-silacyclobutadiene , 1988 .

[32]  M. Regitz,et al.  Phosphorverbindungen ungewöhnlicher Koordination: XXV. Cyclopropenyl-phosphaalkene, Edukte zur Synthese stabiler 2H-Phosphole☆ , 1987 .

[33]  P. Binger,et al.  Der erste monophosphacyclobutadien-cobalt(I)-komplex durch codimerisierung von t-butylphophaacetylen mit bis(trimethylsilyl)acetylen , 1987 .

[34]  R. Mynott,et al.  Tri‐tert‐butylazete—The First Kinetically Stabilized Azacyclobutadiene , 1986 .

[35]  M. Regitz,et al.  Synthesen mit Cyclobutadienen, 10. Sterische Einflüsse auf Isomerisierungen im System Dewarbenzol/Benzol/Prisman , 1986 .

[36]  G. Maier The Cyclobutadiene Problem , 1974 .

[37]  N. Nakamura,et al.  Properties of the [4]annulene system. Induced paramagnetic ring current , 1973 .

[38]  G. Closs,et al.  A Cyclopropenylcarbene-Cyclobutadiene Rearrangement1 , 1966 .

[39]  L. Watts,et al.  Cyclobutadiene- and Benzocyclobutadiene-Iron Tricarbonyl Complexes1 , 1965 .