Consensus‐based sampling

We propose a novel method for sampling and optimization tasks based on a stochastic interacting particle system. We explain how this method can be used for the following two goals: (i) generating approximate samples from a given target distribution; (ii) optimizing a given objective function. The approach is derivative-free and affine invariant, and is therefore well-suited for solving inverse problems defined by complex forward models: (i) allows generation of samples from the Bayesian posterior and (ii) allows determination of the maximum a posteriori estimator. We investigate the properties of the proposed family of methods in terms of various parameter choices, both analytically and by means of numerical simulations. The analysis and numerical simulation establish that the method has potential for general purpose optimization tasks over Euclidean space; contraction properties of the algorithm are established under suitable conditions, and computational experiments demonstrate wide basins of attraction for various specific problems. The analysis and experiments also demonstrate the potential for the sampling methodology in regimes in which the target distribution is unimodal and close to Gaussian; indeed we prove that the method recovers a Laplace approximation to the measure in certain parametric regimes and provide numerical evidence that this Laplace approximation attracts a large set of initial conditions in a number of examples.

[1]  Andrew Gelman,et al.  Handbook of Markov Chain Monte Carlo , 2011 .

[2]  Marco A. Iglesias,et al.  A regularizing iterative ensemble Kalman method for PDE-constrained inverse problems , 2015, 1505.03876.

[3]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[4]  Sean P. Meyn,et al.  Feedback Particle Filter , 2013, IEEE Transactions on Automatic Control.

[5]  Nikolas Nüsken,et al.  Note on Interacting Langevin Diffusions: Gradient Structure and Ensemble Kalman Sampler by Garbuno-Inigo, Hoffmann, Li and Stuart , 2019, ArXiv.

[6]  Jianfeng Lu,et al.  Accelerating Langevin Sampling with Birth-death , 2019, ArXiv.

[7]  Lei Li,et al.  Random Batch Methods (RBM) for interacting particle systems , 2018, J. Comput. Phys..

[8]  S. Reich,et al.  A localization technique for ensemble Kalman filters , 2009, 0909.1678.

[9]  Andrew M. Stuart,et al.  Analysis of the Ensemble Kalman Filter for Inverse Problems , 2016, SIAM J. Numer. Anal..

[10]  Vladas Sidoravicius,et al.  Stochastic Processes and Applications , 2007 .

[11]  Pete Bunch,et al.  Approximations of the Optimal Importance Density Using Gaussian Particle Flow Importance Sampling , 2014, 1406.3183.

[12]  Colin J. Cotter,et al.  Probabilistic Forecasting and Bayesian Data Assimilation , 2015 .

[13]  Oliver G. Ernst,et al.  Analysis of the Ensemble and Polynomial Chaos Kalman Filters in Bayesian Inverse Problems , 2015, SIAM/ASA J. Uncertain. Quantification.

[14]  Grigorios A. Pavliotis,et al.  To interact or not? The convergence properties of interacting stochastic mirror descent , 2020 .

[15]  J. Swart A Course in Interacting Particle Systems , 2017, 1703.10007.

[16]  Sebastian Reich,et al.  Fokker-Planck particle systems for Bayesian inference: Computational approaches , 2019, SIAM/ASA J. Uncertain. Quantification.

[17]  Grigorios A. Pavliotis,et al.  On stochastic mirror descent with interacting particles: convergence properties and variance reduction , 2020 .

[18]  Jos'e Antonio Carrillo,et al.  Stochastic Mean-Field Limit: Non-Lipschitz Forces & Swarming , 2010, 1009.5166.

[19]  École d'été de probabilités de Saint-Flour,et al.  Ecole d'été de probabilités de Saint-Flour XIX, 1989 , 1991 .

[20]  Andrew M. Stuart,et al.  Ensemble Kalman inversion: a derivative-free technique for machine learning tasks , 2018, Inverse Problems.

[21]  Albert C. Reynolds,et al.  Investigation of the sampling performance of ensemble-based methods with a simple reservoir model , 2013, Computational Geosciences.

[22]  Sebastian Reich,et al.  Affine-Invariant Ensemble Transform Methods for Logistic Regression , 2021, Foundations of Computational Mathematics.

[23]  Jesús Rosado,et al.  Asymptotic Flocking Dynamics for the Kinetic Cucker-Smale Model , 2010, SIAM J. Math. Anal..

[24]  A. Stuart,et al.  MAP estimators and their consistency in Bayesian nonparametric inverse problems , 2013, 1303.4795.

[25]  A. Stuart,et al.  Ensemble Kalman methods for inverse problems , 2012, 1209.2736.

[26]  Michael Herty,et al.  Kinetic methods for inverse problems , 2018, Kinetic & Related Models.

[27]  S. Reich A dynamical systems framework for intermittent data assimilation , 2011 .

[28]  Marco Dorigo,et al.  Ant colony optimization theory: A survey , 2005, Theor. Comput. Sci..

[29]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[30]  G. Toscani,et al.  Kinetic models of opinion formation , 2006 .

[31]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[32]  U Vaes,et al.  Wasserstein stability estimates for covariance-preconditioned Fokker–Planck equations , 2019, Nonlinearity.

[33]  J. Carrillo,et al.  Nonlinear Diffusion: Geodesic Convexity is Equivalent to Wasserstein Contraction , 2013, 1309.1932.

[34]  Massimo Fornasier,et al.  Consensus-based optimization methods converge globally in mean-field law , 2021, ArXiv.

[35]  Shi Jin,et al.  A consensus-based global optimization method for high dimensional machine learning problems , 2019 .

[36]  Tapio Schneider,et al.  Calibrate, emulate, sample , 2020, J. Comput. Phys..

[37]  G. A. Pavliotis,et al.  Derivative-Free Bayesian Inversion Using Multiscale Dynamics , 2021, SIAM J. Appl. Dyn. Syst..

[38]  Gabriel Stoltz,et al.  Partial differential equations and stochastic methods in molecular dynamics* , 2016, Acta Numerica.

[39]  Faming Liang,et al.  Statistical and Computational Inverse Problems , 2006, Technometrics.

[40]  Roland Potthast,et al.  Particle filters for applications in geosciences , 2018, 1807.10434.

[41]  Peter McCullagh,et al.  Laplace Approximation of High Dimensional Integrals , 1995 .

[42]  Benedict J. Leimkuhler,et al.  Ensemble preconditioning for Markov chain Monte Carlo simulation , 2016, Statistics and Computing.

[43]  Stefan Grosskinsky Warwick,et al.  Interacting Particle Systems , 2016 .

[44]  Doheon Kim,et al.  Convergence of a first-order consensus-based global optimization algorithm , 2019, Mathematical Models and Methods in Applied Sciences.

[45]  Sébastien Motsch,et al.  Heterophilious Dynamics Enhances Consensus , 2013, SIAM Rev..

[46]  Andrew Stuart,et al.  Convergence analysis of ensemble Kalman inversion: the linear, noisy case , 2017, 1702.07894.

[47]  M. Fornasier,et al.  Consensus-based optimization on hypersurfaces: Well-posedness and mean-field limit , 2020, Mathematical Models and Methods in Applied Sciences.

[48]  Jos'e A. Carrillo,et al.  An analytical framework for a consensus-based global optimization method , 2016, 1602.00220.

[49]  Andrew M. Stuart,et al.  Gaussian Approximations for Probability Measures on Rd , 2017, SIAM/ASA J. Uncertain. Quantification.

[50]  Kaare Brandt Petersen,et al.  The Matrix Cookbook , 2006 .

[51]  Andrew M. Stuart,et al.  Interacting Langevin Diffusions: Gradient Structure and Ensemble Kalman Sampler , 2019, SIAM J. Appl. Dyn. Syst..

[52]  S. Smale,et al.  On the mathematics of emergence , 2007 .

[53]  D. Oliver,et al.  Ensemble Randomized Maximum Likelihood Method as an Iterative Ensemble Smoother , 2011, Mathematical Geosciences.

[54]  Sebastian Reich,et al.  An ensemble Kalman-Bucy filter for continuous data assimilation , 2012 .

[55]  Lea Fleischer,et al.  Regularization of Inverse Problems , 1996 .

[56]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[57]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[58]  Jonathan R Goodman,et al.  Ensemble samplers with affine invariance , 2010 .

[59]  Nikolas Nüsken,et al.  Affine invariant interacting Langevin dynamics for Bayesian inference , 2020, SIAM J. Appl. Dyn. Syst..

[60]  Seung-Yeal Ha,et al.  A simple proof of the Cucker-Smale flocking dynamics and mean-field limit , 2009 .

[61]  Massimo Fornasier,et al.  Particle, kinetic, and hydrodynamic models of swarming , 2010 .

[62]  P. Miller Applied asymptotic analysis , 2006 .

[63]  R. Pinnau,et al.  A consensus-based model for global optimization and its mean-field limit , 2016, 1604.05648.

[64]  Pierre-Emmanuel Jabin,et al.  Mean Field Limit for Stochastic Particle Systems , 2017 .

[65]  Grigorios A. Pavliotis,et al.  The sharp, the flat and the shallow: Can weakly interacting agents learn to escape bad minima? , 2019, ArXiv.

[66]  A. Sznitman Topics in propagation of chaos , 1991 .