Graphite rapidly forms via annihilation of screw dislocations

[1]  Yan‐Bing He,et al.  Revisiting the Roles of Natural Graphite in Ongoing Lithium‐Ion Batteries , 2022, Advanced materials.

[2]  P. Puech,et al.  The X-ray, Raman and TEM Signatures of Cellulose-Derived Carbons Explained , 2022, C.

[3]  F. Boi,et al.  Interplay of edge/screw dislocations and enhanced magnetism in exfoliated pyrolytic graphite with distorted hexagonal moiré superlattices , 2021, Carbon Trends.

[4]  A. R. Gareev,et al.  Effective Heat Treatment Temperature of Carbon Materials in High Temperature Furnaces: Determination by the Parameters of Raman Spectroscopy of Witness Samples , 2021, Inorganic Materials: Applied Research.

[5]  M. Terrones,et al.  Catalysis-free transformation of non-graphitising carbons into highly crystalline graphite , 2020, Communications Materials.

[6]  Jung Yong Kim,et al.  Purification, application and current market trend of natural graphite: A review , 2019, International Journal of Mining Science and Technology.

[7]  A. Gheribi,et al.  Why some carbons may or may not graphitize? The point of view of thermodynamics , 2019, Carbon.

[8]  P. Puech,et al.  New insight on carbonisation and graphitisation mechanisms as obtained from a bottom-up analytical approach of X-ray diffraction patterns , 2019, Carbon.

[9]  B. Rezek,et al.  Covalent Diamond–Graphite Bonding: Mechanism of Catalytic Transformation , 2019, ACS nano.

[10]  C. Buckley,et al.  Pulsed thermal treatment of carbon up to 3000 °C using an atomic absorption spectrometer , 2018, Carbon.

[11]  Takashi Taniguchi,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[12]  M. Madou,et al.  Graphitizing Non-graphitizable Carbons by Stress-induced Routes , 2017, Scientific Reports.

[13]  Jean-Pierre Da Costa,et al.  A time-dependent atomistic reconstruction of severe irradiation damage and associated property changes in nuclear graphite , 2017 .

[14]  M. Heggie,et al.  Interlayer vacancy defects in AA-stacked bilayer graphene: density functional theory predictions , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[15]  Nigel A. Marks,et al.  Graphitization of amorphous carbons: A comparative study of interatomic potentials , 2016 .

[16]  A. Gheribi,et al.  The graphitization temperature threshold analyzed through a second-order structural transformation , 2016 .

[17]  Pierre Hirel,et al.  Atomsk: A tool for manipulating and converting atomic data files , 2015, Comput. Phys. Commun..

[18]  Emmanuelle Gouillart,et al.  scikit-image: image processing in Python , 2014, PeerJ.

[19]  Jeongnim Kim,et al.  Cohesion energetics of carbon allotropes: quantum Monte Carlo study. , 2013, The Journal of chemical physics.

[20]  M. Heggie,et al.  Extended interplanar linking in graphite formed from vacancy aggregates. , 2013, Physical review letters.

[21]  J.-P. Da Costa,et al.  Structural features of pyrocarbon atomistic models constructed from transmission electron microscopy images , 2012 .

[22]  W. E. Billups,et al.  Structural Dislocations in Anthracite , 2011 .

[23]  A. Mahmood,et al.  Production, properties and potential of graphene , 2010, 1002.0370.

[24]  E. Birgin,et al.  PACKMOL: A package for building initial configurations for molecular dynamics simulations , 2009, J. Comput. Chem..

[25]  Timothy Abram,et al.  Generation-IV nuclear power: A review of the state of the science , 2008 .

[26]  M. Heggie,et al.  Density functional calculations on the intricacies of Moiré patterns on graphite , 2007 .

[27]  M. Parrinello,et al.  Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.

[28]  M. Monthioux Structure, Texture, and Thermal Behaviour of Polyaromatic Solids , 2002 .

[29]  N. Marks Generalizing the environment-dependent interaction potential for carbon , 2000 .

[30]  Mark A. Miller,et al.  Archetypal energy landscapes , 1998, Nature.

[31]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[32]  G. Zack,et al.  Automatic measurement of sister chromatid exchange frequency. , 1977, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[33]  T. Sekiya,et al.  Kinetic studies of the graphitization process—I Effect of ambient gas phase on the rate of graphitization , 1965 .

[34]  G. Hennig Screw Dislocations in Graphite , 1965, Science.

[35]  G. J. Dienes,et al.  Mechanism for Self‐Diffusion in Graphite , 1952 .

[36]  R. Franklin The structure of graphitic carbons , 1951 .

[37]  Jochen A. H. Dreyer,et al.  Internal structure of soot particles in a diffusion flame , 2019, Carbon.

[38]  C. Park,et al.  Specification for a standard procedure of X-ray diffraction measurements on carbon materials , 2004 .

[39]  D. Chung Review Graphite , 2002 .

[40]  J. Rakovan,et al.  Multiple length scale growth spirals on metamorphic graphite {001} surfaces studied by atomic force microscopy , 2002 .

[41]  Franzblau Computation of ring statistics for network models of solids. , 1991, Physical review. B, Condensed matter.

[42]  A. Oberlin Carbonization and graphitization , 1984 .