Beamforming using compressive sensing.

Compressive sensing (CS) is compared with conventional beamforming using horizontal beamforming of at-sea, towed-array data. They are compared qualitatively using bearing time records and quantitatively using signal-to-interference ratio. Qualitatively, CS exhibits lower levels of background interference than conventional beamforming. Furthermore, bearing time records show increasing, but tolerable, levels of background interference when the number of elements is decreased. For the full array, CS generates signal-to-interference ratio of 12 dB, but conventional beamforming only 8 dB. The superiority of CS over conventional beamforming is much more pronounced with undersampling.

[1]  Yann Stephan,et al.  Geoacoustic characterization of the seafloor from a subbottom profiler applied to the BASE'07 experiment , 2008 .

[2]  Joel A. Tropp,et al.  Just relax: convex programming methods for identifying sparse signals in noise , 2006, IEEE Transactions on Information Theory.

[3]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[4]  J. Capon High-resolution frequency-wavenumber spectrum analysis , 1969 .

[5]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[6]  E.J. Candes Compressive Sampling , 2022 .

[7]  Junfeng Yang,et al.  Alternating Direction Algorithms for 1-Problems in Compressive Sensing , 2009, SIAM J. Sci. Comput..

[8]  C. Gervaise,et al.  On the characterization of time-scale underwater acoustic signals using matching pursuit decomposition , 2009, OCEANS 2009.

[9]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[10]  R. Kinns,et al.  The acoustic telescope , 1976 .

[11]  K. M. Becker,et al.  The ONR Five Octave Research Array (FORA) at Penn State , 2003, Oceans 2003. Celebrating the Past ... Teaming Toward the Future (IEEE Cat. No.03CH37492).

[12]  Jun Zhang,et al.  On Recovery of Sparse Signals via ℓ1 Minimization , 2008, ArXiv.

[13]  Jun Zhang,et al.  On Recovery of Sparse Signals Via $\ell _{1}$ Minimization , 2008, IEEE Transactions on Information Theory.