Fully quantum source compression with a quantum helper

We study source compression with a helper in the fully quantum regime, extending our earlier result on classical source compression with a quantum helper [arXiv:1501.04366, 2015]. We characterise the quantum resources involved in this problem, and derive a single-letter expression of the achievable rate region when entanglement assistance is available. The direct coding proof is based on a combination of two fundamental protocols, namely the quantum state merging protocol and the quantum reverse Shannon theorem (QRST). This result connects distributed source compression with the QRST protocol, a quantum protocol that consumes noiseless resources to simulate a noisy quantum channel.

[1]  Vincent Yan Fu Tan,et al.  Nonasymptotic and Second-Order Achievability Bounds for Coding With Side-Information , 2013, IEEE Transactions on Information Theory.

[2]  Mark M. Wilde,et al.  Quantum-to-classical rate distortion coding , 2012, ArXiv.

[3]  Mark M. Wilde,et al.  Quantum Rate Distortion, Reverse Shannon Theorems, and Source-Channel Separation , 2011, IEEE Transactions on Information Theory.

[4]  R. Renner,et al.  One-Shot Decoupling , 2010, 1012.6044.

[5]  Rudolf Ahlswede,et al.  Source coding with side information and a converse for degraded broadcast channels , 1975, IEEE Trans. Inf. Theory.

[6]  Shun Watanabe,et al.  Source compression with a quantum helper , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[7]  Andreas Winter,et al.  Partial quantum information , 2005, Nature.

[8]  M. Horodecki,et al.  Quantum State Merging and Negative Information , 2005, quant-ph/0512247.

[9]  Masahito Hayashi,et al.  Quantum universal variable-length source coding , 2002, quant-ph/0202001.

[10]  Igor Devetak,et al.  Optimal Quantum Source Coding With Quantum Side Information at the Encoder and Decoder , 2007, IEEE Transactions on Information Theory.

[11]  M. Wilde Quantum Information Theory: Noisy Quantum Shannon Theory , 2013 .

[12]  Schumacher,et al.  Quantum coding. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[13]  Ivan Savov,et al.  Network information theory for classical-quantum channels , 2012, ArXiv.

[14]  Mark M. Wilde,et al.  The information-theoretic costs of simulating quantum measurements , 2012, ArXiv.

[15]  Aram W. Harrow,et al.  A family of quantum protocols , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[16]  Vincent Yan Fu Tan,et al.  Non-asymptotic and second-order achievability bounds for source coding with side-information , 2013, 2013 IEEE International Symposium on Information Theory.

[17]  Andreas J. Winter,et al.  A Resource Framework for Quantum Shannon Theory , 2008, IEEE Transactions on Information Theory.

[18]  N. Datta,et al.  The apex of the family tree of protocols: optimal rates and resource inequalities , 2011, 1103.1135.

[19]  Mark M. Wilde,et al.  Trading classical communication, quantum communication, and entanglement in quantum Shannon theory , 2009, IEEE Transactions on Information Theory.

[20]  Andreas J. Winter,et al.  Entanglement-Assisted Capacity of Quantum Multiple-Access Channels , 2008, IEEE Transactions on Information Theory.

[21]  R. Schumann Quantum Information Theory , 2000, quant-ph/0010060.

[22]  Ke Li,et al.  A Father Protocol for Quantum Broadcast Channels , 2006, IEEE Transactions on Information Theory.

[23]  Aaron D. Wyner,et al.  On source coding with side information at the decoder , 1975, IEEE Trans. Inf. Theory.

[24]  Andreas J. Winter,et al.  The Quantum Reverse Shannon Theorem and Resource Tradeoffs for Simulating Quantum Channels , 2009, IEEE Transactions on Information Theory.

[25]  A. Winter,et al.  The mother of all protocols: restructuring quantum information’s family tree , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[26]  Benjamin Schumacher,et al.  A new proof of the quantum noiseless coding theorem , 1994 .

[27]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[28]  Mark M. Wilde,et al.  Quantum Rate-Distortion Coding With Auxiliary Resources , 2012, IEEE Transactions on Information Theory.

[29]  A. Winter ‘‘Extrinsic’’ and ‘‘Intrinsic’’ Data in Quantum Measurements: Asymptotic Convex Decomposition of Positive Operator Valued Measures , 2001, quant-ph/0109050.