In silico prediction of post-translational modifications.

Methods for predicting protein post-translational modifications have been developed extensively. In this chapter, we review major post-translational modification prediction strategies, with a particular focus on statistical and machine learning approaches. We present the workflow of the methods and summarize the advantages and disadvantages of the methods.

[1]  John S. Garavelli,et al.  The RESID Database of Protein Modifications: 2003 developments , 2003, Nucleic Acids Res..

[2]  Hongfang Liu,et al.  Support Vector Machine-Based Mucin-Type O-linked Glycosylation Site Prediction Using Enhanced Sequence Feature Encoding , 2009, AMIA.

[3]  Bermseok Oh,et al.  Prediction of phosphorylation sites using SVMs , 2004, Bioinform..

[4]  G. Bologna,et al.  N‐Terminal myristoylation predictions by ensembles of neural networks , 2004, Proteomics.

[5]  Ishtiaq Ahmad,et al.  In silico determination of intracellular glycosylation and phosphorylation sites in human selectins: Implications for biological function , 2007, Journal of cellular biochemistry.

[6]  Amos Bairoch,et al.  PROSITE: A Documented Database Using Patterns and Profiles as Motif Descriptors , 2002, Briefings Bioinform..

[7]  N. Blom,et al.  Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. , 1999, Journal of molecular biology.

[8]  Leszek Rychlewski,et al.  ELM server: a new resource for investigating short functional sites in modular eukaryotic proteins , 2003, Nucleic Acids Res..

[9]  Toby J. Gibson,et al.  Phosphorylation of S776 and 14-3-3 Binding Modulate Ataxin-1 Interaction with Splicing Factors , 2009, PloS one.

[10]  Bingwen Lu,et al.  Automatic validation of phosphopeptide identifications from tandem mass spectra. , 2007, Analytical chemistry.

[11]  S. Brunak,et al.  Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites. , 2005, Glycobiology.

[12]  Yu Xue,et al.  GPS: a novel group-based phosphorylation predicting and scoring method. , 2004, Biochemical and biophysical research communications.

[13]  Hsien-Da Huang,et al.  dbPTM: an information repository of protein post-translational modification , 2005, Nucleic Acids Res..

[14]  O. Lund,et al.  Prediction of O-glycosylation of mammalian proteins: specificity patterns of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase. , 1995, The Biochemical journal.

[15]  Jorng-Tzong Horng,et al.  Incorporating support vector machine for identifying protein tyrosine sulfation sites , 2009, J. Comput. Chem..

[16]  Jonathan D. Hirst,et al.  Prediction of glycosylation sites using random forests , 2008, BMC Bioinformatics.

[17]  Jianfeng Feng,et al.  A machine learning approach to explore the spectra intensity pattern of peptides using tandem mass spectrometry data , 2008, BMC Bioinformatics.

[18]  Jorng-Tzong Horng,et al.  KinasePhos: a web tool for identifying protein kinase-specific phosphorylation sites , 2005, Nucleic Acids Res..

[19]  Hanno Steen,et al.  Development of human protein reference database as an initial platform for approaching systems biology in humans. , 2003, Genome research.

[20]  Nikolaj Blom,et al.  BIOINFORMATICS APPLICATIONS NOTE Sequence analysis NetAcet: prediction of N-terminal acetylation sites , 2004 .

[21]  Ramneek Gupta Prediction of glycosylation sites in proteomes: from post-translational modifications to protein function , 2001 .

[22]  Ke Chen,et al.  Prediction of flexible/rigid regions from protein sequences using k-spaced amino acid pairs , 2007, BMC Structural Biology.

[23]  J. Jaeken,et al.  Congenital disorders of glycosylation: the rapidly growing tip of the iceberg , 2001, Current opinion in neurology.

[24]  Katalin F Medzihradszky,et al.  Characterization of site-specific N-glycosylation. , 2008, Methods in molecular biology.

[25]  Dariusz Plewczynski,et al.  AutoMotif Server for prediction of phosphorylation sites in proteins using support vector machine: 2007 update , 2008, Journal of molecular modeling.

[26]  S Brunak,et al.  Scanning the available Dictyostelium discoideum proteome for O-linked GlcNAc glycosylation sites using neural networks. , 1999, Glycobiology.

[27]  P Bork,et al.  Sequence properties of GPI-anchored proteins near the omega-site: constraints for the polypeptide binding site of the putative transamidase. , 1998, Protein engineering.

[28]  P. Cohen,et al.  The regulation of protein function by multisite phosphorylation--a 25 year update. , 2000, Trends in biochemical sciences.

[29]  Nikolaj Blom,et al.  Prediction of proprotein convertase cleavage sites. , 2004, Protein engineering, design & selection : PEDS.

[30]  Paul T Martin,et al.  The dystroglycanopathies: the new disorders of O-linked glycosylation. , 2005, Seminars in pediatric neurology.

[31]  Michel Zivy,et al.  Extent of N‐terminal modifications in cytosolic proteins from eukaryotes , 2008, Proteomics.

[32]  S. Brunak,et al.  Analysis and prediction of mammalian protein glycation. , 2006, Glycobiology.

[33]  O. Lund,et al.  NetOglyc: Prediction of mucin type O-glycosylation sites based on sequence context and surface accessibility , 1998, Glycoconjugate Journal.

[34]  Michael C Giddings,et al.  Prediction of posttranslational modifications using intact-protein mass spectrometric data. , 2004, Analytical chemistry.

[35]  G. Heijne,et al.  ChloroP, a neural network‐based method for predicting chloroplast transit peptides and their cleavage sites , 1999, Protein science : a publication of the Protein Society.

[36]  R W Sweet,et al.  Protein and carbohydrate structural analysis of a recombinant soluble CD4 receptor by mass spectrometry. , 1989, The Journal of biological chemistry.

[37]  Bostjan Kobe,et al.  Predikin and PredikinDB: a computational framework for the prediction of protein kinase peptide specificity and an associated database of phosphorylation sites , 2008, BMC Bioinformatics.

[38]  Dariusz Plewczynski,et al.  AutoMotif server: prediction of single residue post-translational modifications in proteins , 2005, Bioinform..

[39]  Nikolaj Blom,et al.  NetPhosYeast: prediction of protein phosphorylation sites in yeast , 2007, Bioinform..

[40]  Catherine A. Cooper,et al.  GlycoMod – A software tool for determining glycosylation compositions from mass spectrometric data , 2001, Proteomics.

[41]  Hsien-Da Huang,et al.  KinasePhos 2.0: a web server for identifying protein kinase-specific phosphorylation sites based on sequences and coupling patterns , 2007, Nucleic Acids Res..

[42]  Yu Xue,et al.  PPSP: prediction of PK-specific phosphorylation site with Bayesian decision theory , 2006, BMC Bioinformatics.

[43]  Michael B. Yaffe,et al.  Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs , 2003, Nucleic Acids Res..

[44]  Dongsup Kim,et al.  PostMod: sequence based prediction of kinase-specific phosphorylation sites with indirect relationship , 2010, BMC Bioinformatics.

[45]  Søren Brunak,et al.  Prediction of Glycosylation Across the Human Proteome and the Correlation to Protein Function , 2001, Pacific Symposium on Biocomputing.

[46]  Yu Xue,et al.  GPS 2.0, a Tool to Predict Kinase-specific Phosphorylation Sites in Hierarchy *S , 2008, Molecular & Cellular Proteomics.

[47]  Christopher S. Oehmen,et al.  A support vector machine model for the prediction of proteotypic peptides for accurate mass and time proteomics , 2008, Bioinform..

[48]  Albert Y. Zomaya,et al.  SiteSeek: Post-translational modification analysis using adaptive locality-effective kernel methods and new profiles , 2008, BMC Bioinformatics.

[49]  Eunok Paek,et al.  Prediction of novel modifications by unrestrictive search of tandem mass spectra. , 2009, Journal of proteome research.

[50]  N. Blom,et al.  Prediction of post‐translational glycosylation and phosphorylation of proteins from the amino acid sequence , 2004, Proteomics.