Multiple knockout analysis of genetic robustness in the yeast metabolic network

[1]  Liran Carmel,et al.  Unifying measures of gene function and evolution , 2006, Proceedings of the Royal Society B: Biological Sciences.

[2]  B. Palsson,et al.  Expanded Metabolic Reconstruction of Helicobacter pylori (iIT341 GSM/GPR): an In Silico Genome-Scale Characterization of Single- and Double-Deletion Mutants , 2005, Journal of bacteriology.

[3]  U. Sauer,et al.  Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast , 2005, Genome Biology.

[4]  R. Karp,et al.  From the Cover : Conserved patterns of protein interaction in multiple species , 2005 .

[5]  G. Church,et al.  Modular epistasis in yeast metabolism , 2005, Nature Genetics.

[6]  Hiroaki Kitano,et al.  Biological robustness , 2008, Nature Reviews Genetics.

[7]  J. Stelling,et al.  Robustness of Cellular Functions , 2004, Cell.

[8]  Nicola J. Rinaldi,et al.  Transcriptional regulatory code of a eukaryotic genome , 2004, Nature.

[9]  C. Pál,et al.  Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast , 2004, Nature.

[10]  Gary D Bader,et al.  Global Mapping of the Yeast Genetic Interaction Network , 2004, Science.

[11]  Steffen Klamt,et al.  Minimal cut sets in biochemical reaction networks , 2004, Bioinform..

[12]  B. Palsson,et al.  Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Kenneth J. Kauffman,et al.  Advances in flux balance analysis. , 2003, Current opinion in biotechnology.

[14]  D. M. Krylov,et al.  Gene loss, protein sequence divergence, gene dispensability, expression level, and interactivity are correlated in eukaryotic evolution. , 2003, Genome research.

[15]  G. Wagner,et al.  EVOLUTION AND DETECTION OF GENETIC ROBUSTNESS , 2003 .

[16]  Carole A. Goble,et al.  Investigating Semantic Similarity Measures Across the Gene Ontology: The Relationship Between Sequence and Annotation , 2003, Bioinform..

[17]  B. Palsson,et al.  Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. , 2003, Genome research.

[18]  Laurence D. Hurst,et al.  Genomic function (communication arising): Rate of evolution and gene dispensability , 2003, Nature.

[19]  Ronald W. Davis,et al.  Role of duplicate genes in genetic robustness against null mutations , 2003, Nature.

[20]  B. Palsson,et al.  Large-scale evaluation of in silico gene deletions in Saccharomyces cerevisiae. , 2003, Omics : a journal of integrative biology.

[21]  Colin D. Meiklejohn,et al.  A single mode of canalization , 2002 .

[22]  Ronald W. Davis,et al.  Functional profiling of the Saccharomyces cerevisiae genome , 2002, Nature.

[23]  A. E. Hirsh,et al.  Protein dispensability and rate of evolution , 2001, Nature.

[24]  B. Garvik,et al.  Principles for the Buffering of Genetic Variation , 2001, Science.

[25]  Yudong D. He,et al.  Functional Discovery via a Compendium of Expression Profiles , 2000, Cell.

[26]  A. Wagner Robustness against mutations in genetic networks of yeast , 2000, Nature Genetics.

[27]  D. Fell,et al.  A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks , 2000, Nature Biotechnology.

[28]  Ronald W. Davis,et al.  Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. , 1999, Science.

[29]  R. Lenski,et al.  Test of synergistic interactions among deleterious mutations in bacteria , 1997, Nature.

[30]  Martin A. Nowak,et al.  Evolution of genetic redundancy , 1997, Nature.

[31]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[32]  H. Feldmann,et al.  TKL2, a second transketolase gene of Saccharomyces cerevisiae. Cloning, sequence and deletion analysis of the gene. , 1993, European journal of biochemistry.

[33]  A. Lehninger Principles of Biochemistry , 1984 .