POP: a hybrid point and polygon rendering system for large data

We introduce a simple but effective extension to the existing pure point rendering systems. Rather than using only points, we use both points and polygons to represent and render large mesh models. We start from triangles as leaf nodes and build up a hierarchical tree structure with intermediate nodes as points. During the rendering, the system determines whether to use a point (of a certain intermediate level node) or a triangle (of a leaf node) for display depending on the screen contribution of each node. While points are used to speedup the rendering of distant objects, triangles are used to ensure the quality of close objects. Our method can accelerate the rendering of large models, compromising little in image quality.

[1]  Nelson L. Max,et al.  Hierarchical Rendering of Trees from Precomputed Multi-Layer Z-Buffers , 1996, Rendering Techniques.

[2]  Richard Szeliski,et al.  The lumigraph , 1996, SIGGRAPH.

[3]  Dinesh Manocha,et al.  Hierarchical back-face computation , 1996, Comput. Graph..

[4]  Nelson L. Max,et al.  Rendering Trees from Precomputed Z-Buffer Views , 1995, Rendering Techniques.

[5]  Georgios Sakas,et al.  Sampling and anti-aliasing of discrete 3-D volume density textures , 1991, Comput. Graph..

[6]  Leonard McMillan,et al.  Plenoptic Modeling: An Image-Based Rendering System , 2023 .

[7]  Hugues Hoppe Smooth view-dependent level-of-detail control and its application to terrain rendering , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[8]  Hanan Samet,et al.  Applications of spatial data structures , 1989 .

[9]  David Salesin,et al.  Interactive multiresolution surface viewing , 1996, SIGGRAPH.

[10]  Michael Deering,et al.  Geometry compression , 1995, SIGGRAPH.

[11]  Marc Levoy,et al.  QSplat: a multiresolution point rendering system for large meshes , 2000, SIGGRAPH.

[12]  Amitabh Varshney,et al.  Differential Point Rendering , 2001, Rendering Techniques.

[13]  Marc Levoy,et al.  The Use of Points as a Display Primitive , 2000 .

[14]  Daniel Cohen-Or,et al.  Volume graphics , 1993, Computer.

[15]  Peter Schröder,et al.  Multiresolution signal processing for meshes , 1999, SIGGRAPH.

[16]  Dinesh Manocha,et al.  Visibility culling using hierarchical occlusion maps , 1997, SIGGRAPH.

[17]  Richard Szeliski,et al.  Layered depth images , 1998, SIGGRAPH.

[18]  Hugues Hoppe,et al.  View-dependent refinement of progressive meshes , 1997, SIGGRAPH.

[19]  Shenchang Eric Chen,et al.  QuickTime VR: an image-based approach to virtual environment navigation , 1995, SIGGRAPH.

[20]  Gernot Schaufler Per-Object Image Warping with Layered Impostors , 1998, Rendering Techniques.

[21]  Henrik Wann Jensen,et al.  Ray Tracing Point Sampled Geometry , 2000, Rendering Techniques.

[22]  Dani Lischinski,et al.  Image-Based Rendering for Non-Diffuse Synthetic Scenes , 1998, Rendering Techniques.

[23]  Jihad El-Sana,et al.  Adaptive Real-Time Level-of-Detail-Based Rendering for Polygonal Models , 1997, IEEE Trans. Vis. Comput. Graph..

[24]  Anselmo Lastra,et al.  LDI tree: a hierarchical representation for image-based rendering , 1999, SIGGRAPH.

[25]  Edwin Earl Catmull,et al.  A subdivision algorithm for computer display of curved surfaces. , 1974 .

[26]  Marc Levoy,et al.  Light field rendering , 1996, SIGGRAPH.

[27]  Matthias Zwicker,et al.  Surfels: surface elements as rendering primitives , 2000, SIGGRAPH.

[28]  Carlo H. Séquin,et al.  Visibility preprocessing for interactive walkthroughs , 1991, SIGGRAPH.

[29]  Marc Levoy,et al.  Gaze-directed volume rendering , 1990, I3D '90.

[30]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[31]  W. Lorensen,et al.  Two algorithms for the three-dimensional reconstruction of tomograms. , 1988, Medical physics.