Size-dependent modifications of the Raman spectrum of rutile TiO2

Crystallite-size-dependent variations in the Raman spectrum of rutile TiO2 have been characterized and compared with those of the well-investigated rutile SnO2. For an average crystallite size below ∼25nm, the Raman spectrum of rutile TiO2 nanocrystals displays an additional low-frequency, possibly surface vibrational, mode at ∼105cm−1. The disorder-activated, high-frequency surface modes seen in the Raman spectrum of rutile SnO2 nanocrystals are absent. The Eg and A1g vibrational modes of rutile TiO2 show systematic redshifts, broadening, and intensity reductions with decreasing crystallite size, which are consistent with phonon confinement behavior. A phonon confinement model provides reasonable crystallite size quantification, as in the case of rutile SnO2 and RuO2.

[1]  S. Pratsinis,et al.  Raman spectroscopy characterization of titania nanoparticles produced by flame pyrolysis: The influence of size and stoichiometry , 2005 .

[2]  Geoff Thornton,et al.  Revisiting the surface structure of TiO2(110): A quantitative low-energy electron diffraction study , 2005 .

[3]  K. Zhu,et al.  Size and phonon-confinement effects on low-frequency Raman mode of anatase TiO2 nanocrystal , 2005 .

[4]  Emilio Palomares,et al.  Charge transport versus recombination in dye-sensitized solar cells employing nanocrystalline TiO2 and SnO2 films. , 2005, The journal of physical chemistry. B.

[5]  L. Dubrovinsky,et al.  Finite-size and pressure effects on the Raman spectrum of nanocrystalline anatase Ti O 2 , 2005 .

[6]  Y. Chen,et al.  Raman scattering and field-emission properties of RuO2 nanorods , 2005 .

[7]  Brian F. Woodfield,et al.  Evidence of linear lattice expansion and covalency enhancement in rutile TiO2 nanocrystals , 2004 .

[8]  J. Hanson,et al.  Nanostructured oxides in chemistry: characterization and properties. , 2004, Chemical reviews.

[9]  A. Reller,et al.  Photoinduced reactivity of titanium dioxide , 2004 .

[10]  Liping Li,et al.  Grain-growth kinetics of rutile TiO 2 nanocrystals under hydrothermal conditions , 2003 .

[11]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[12]  P. Milani,et al.  Engineering the nanocrystalline structure of TiO2 films by aerodynamically filtered cluster deposition , 2002 .

[13]  Julian D. Gale,et al.  Simulation of low index rutile surfaces with a transferable variable-charge Ti–O interatomic potential and comparison with ab initio results , 2002 .

[14]  Arie Zaban,et al.  TiO2-Coated Nanoporous SnO2 Electrodes for Dye-Sensitized Solar Cells , 2002 .

[15]  Angel Diéguez,et al.  The complete Raman spectrum of nanometric SnO 2 particles , 2001 .

[16]  Y. Lei,et al.  Fabrication, characterization and Raman study of TiO2 nanowire arrays prepared by anodic oxidative hydrolysis of TiCl3 , 2001 .

[17]  Yongli He,et al.  Raman scattering study on anatase TiO2 nanocrystals , 2000 .

[18]  Y. Kawazoe,et al.  Ab initio study of phonons in the rutile structure of under pressure , 2000 .

[19]  P. P. Lottici,et al.  Phonon confinement effects in the Raman scattering by TiO2 nanocrystals , 1998 .

[20]  F. Pollak,et al.  RAMAN SPECTROSCOPY AS A MORPHOLOGICAL PROBE FOR TIO2 AEROGELS , 1997 .

[21]  L. Qi,et al.  Hydrothermal Preparation of Uniform Nanosize Rutile and Anatase Particles , 1995 .

[22]  Thomas J. Ahrens,et al.  Mineral physics & crystallography : a handbook of physical constants , 1995 .

[23]  Jeanette G. Grasselli,et al.  Analytical Raman spectroscopy , 1991 .

[24]  R. Siegel,et al.  Calibration of the Raman spectrum to the oxygen stoichiometry of nanophase TiO2 , 1990 .

[25]  R. Siegel,et al.  Raman spectroscopy of nanophase TiO_2 , 1989 .

[26]  Robert M. Hazen,et al.  Bulk moduli and high-pressure crystal structures of rutile-type compounds , 1981 .

[27]  Ram S. Katiyar,et al.  Dynamics of the rutile structure. III. Lattice dynamics, infrared and Raman spectra of SnO2 , 1971 .

[28]  J. Traylor The Lattice Dynamics of Rutile. , 1971 .

[29]  T. C. Damen,et al.  Raman Spectra of TiO2, MgF2, ZnF2, FeF2, and MnF2 , 1967 .