Size-dependent modifications of the Raman spectrum of rutile TiO2
暂无分享,去创建一个
Varghese Swamy | Qing Dai | B. Muddle | V. Swamy | Barrington Charles Muddle | B. C. Muddle | Q. Dai
[1] S. Pratsinis,et al. Raman spectroscopy characterization of titania nanoparticles produced by flame pyrolysis: The influence of size and stoichiometry , 2005 .
[2] Geoff Thornton,et al. Revisiting the surface structure of TiO2(110): A quantitative low-energy electron diffraction study , 2005 .
[3] K. Zhu,et al. Size and phonon-confinement effects on low-frequency Raman mode of anatase TiO2 nanocrystal , 2005 .
[4] Emilio Palomares,et al. Charge transport versus recombination in dye-sensitized solar cells employing nanocrystalline TiO2 and SnO2 films. , 2005, The journal of physical chemistry. B.
[5] L. Dubrovinsky,et al. Finite-size and pressure effects on the Raman spectrum of nanocrystalline anatase Ti O 2 , 2005 .
[6] Y. Chen,et al. Raman scattering and field-emission properties of RuO2 nanorods , 2005 .
[7] Brian F. Woodfield,et al. Evidence of linear lattice expansion and covalency enhancement in rutile TiO2 nanocrystals , 2004 .
[8] J. Hanson,et al. Nanostructured oxides in chemistry: characterization and properties. , 2004, Chemical reviews.
[9] A. Reller,et al. Photoinduced reactivity of titanium dioxide , 2004 .
[10] Liping Li,et al. Grain-growth kinetics of rutile TiO 2 nanocrystals under hydrothermal conditions , 2003 .
[11] Ulrike Diebold,et al. The surface science of titanium dioxide , 2003 .
[12] P. Milani,et al. Engineering the nanocrystalline structure of TiO2 films by aerodynamically filtered cluster deposition , 2002 .
[13] Julian D. Gale,et al. Simulation of low index rutile surfaces with a transferable variable-charge Ti–O interatomic potential and comparison with ab initio results , 2002 .
[14] Arie Zaban,et al. TiO2-Coated Nanoporous SnO2 Electrodes for Dye-Sensitized Solar Cells , 2002 .
[15] Angel Diéguez,et al. The complete Raman spectrum of nanometric SnO 2 particles , 2001 .
[16] Y. Lei,et al. Fabrication, characterization and Raman study of TiO2 nanowire arrays prepared by anodic oxidative hydrolysis of TiCl3 , 2001 .
[17] Yongli He,et al. Raman scattering study on anatase TiO2 nanocrystals , 2000 .
[18] Y. Kawazoe,et al. Ab initio study of phonons in the rutile structure of under pressure , 2000 .
[19] P. P. Lottici,et al. Phonon confinement effects in the Raman scattering by TiO2 nanocrystals , 1998 .
[20] F. Pollak,et al. RAMAN SPECTROSCOPY AS A MORPHOLOGICAL PROBE FOR TIO2 AEROGELS , 1997 .
[21] L. Qi,et al. Hydrothermal Preparation of Uniform Nanosize Rutile and Anatase Particles , 1995 .
[22] Thomas J. Ahrens,et al. Mineral physics & crystallography : a handbook of physical constants , 1995 .
[23] Jeanette G. Grasselli,et al. Analytical Raman spectroscopy , 1991 .
[24] R. Siegel,et al. Calibration of the Raman spectrum to the oxygen stoichiometry of nanophase TiO2 , 1990 .
[25] R. Siegel,et al. Raman spectroscopy of nanophase TiO_2 , 1989 .
[26] Robert M. Hazen,et al. Bulk moduli and high-pressure crystal structures of rutile-type compounds , 1981 .
[27] Ram S. Katiyar,et al. Dynamics of the rutile structure. III. Lattice dynamics, infrared and Raman spectra of SnO2 , 1971 .
[28] J. Traylor. The Lattice Dynamics of Rutile. , 1971 .
[29] T. C. Damen,et al. Raman Spectra of TiO2, MgF2, ZnF2, FeF2, and MnF2 , 1967 .