Context-dependent transcriptional interpretation of mitogen activated protein kinase signaling in the Drosophila embryo.

Terminal regions of the Drosophila embryo are patterned by the localized activation of Mitogen Activated Protein Kinase (MAPK), which induces zygotic genes through relief of their repression by transcriptional repressor Capicua. The levels of MAPK activation at the anterior and posterior termini are close to each other, but the expression patterns of MAPK-target genes, such as zerknüllt (zen) and tailless (tll), display strong anterior-posterior (AP) asymmetry. This region-specific response to MAPK activation provides a clear example of context-dependent interpretation of inductive signaling, a common developmental effect that remains poorly understood. In the past, the AP asymmetry of zen expression was attributed to a mechanism that depends on MAPK substrate competition. We present data suggesting that the asymmetric expression of tll is generated by a different mechanism, based on feedforward control and multiple enhancers of the tll gene. A simple mathematical model of this mechanism correctly predicts how the wild-type expression pattern of tll changes in mutants affecting the anterior, dorsoventral, and terminal patterning systems and some of their direct targets.

[1]  C. Nüsslein-Volhard,et al.  The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner , 1988, Cell.

[2]  A. Mahowald,et al.  Developmental genetics of the gastrulation defective locus in Drosophila melanogaster. , 1988, Developmental biology.

[3]  E. Wieschaus,et al.  Female sterile mutations on the second chromosome of Drosophila melanogaster. I. Maternal effect mutations. , 1989, Genetics.

[4]  C. Nüsslein-Volhard,et al.  Rescue of bicoid mutant Drosophila embryos by Bicoid fusion proteins containing heterologous activating sequences , 1989, Nature.

[5]  E. Steingrímsson,et al.  bicoid and the terminal system activate tailless expression in the early Drosophila embryo. , 1992, Development.

[6]  J. Lengyel,et al.  Control of tailless expression by bicoid, dorsal and synergistically interacting terminal system regulatory elements , 1993, Mechanisms of Development.

[7]  Mike Rothe,et al.  Identical transacting factor requirement for knirps and knirps-related gene expression in the anterior but not in the posterior region of the Drosophila embryo , 1994, Mechanisms of Development.

[8]  M. Levine,et al.  Regulation of the dorsal morphogen by the Toll and torso signaling pathways: a receptor tyrosine kinase selectively masks transcriptional repression. , 1994, Genes & development.

[9]  H. Jaeckle,et al.  Regulation and function of the terminal gap gene huckebein in the Drosophila blastoderm. , 1996, The International journal of developmental biology.

[10]  M. Levine,et al.  Long-range repression in the Drosophila embryo. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[11]  V. Hartenstein,et al.  Complex regulatory region mediating tailless expression in early embryonic patterning and brain development. , 1997, Development.

[12]  Z. Paroush,et al.  Huckebein repressor activity in Drosophila terminal patterning is mediated by Groucho. , 1999, Development.

[13]  M. Simon,et al.  Receptor Tyrosine Kinases Specific Outcomes from General Signals , 2000, Cell.

[14]  G. Jiménez,et al.  Relief of gene repression by torso RTK signaling: role of capicua in Drosophila terminal and dorsoventral patterning. , 2000, Genes & development.

[15]  Stephen S. Gisselbrecht,et al.  Ras Pathway Specificity Is Determined by the Integration of Multiple Signal-Activated and Tissue-Restricted Transcription Factors , 2000, Cell.

[16]  H. Jäckle,et al.  Receptor tyrosine kinase signaling regulates different modes of Groucho-dependent control of Dorsal , 2000, Current Biology.

[17]  A. Gould,et al.  spalt-dependent switching between two cell fates that are induced by the Drosophila EGF receptor. , 2001, Development.

[18]  S. Jia,et al.  Transcriptional repression: the long and the short of it. , 2001, Genes & development.

[19]  T. P. Neufeld,et al.  Transcriptional regulation of cytoskeletal functions and segmentation by a novel maternal pair-rule gene, lilliputian. , 2001, Development.

[20]  Michael Levine,et al.  Dorsal gradient networks in the Drosophila embryo. , 2002, Developmental biology.

[21]  Anna G. Nazina,et al.  Extraction of functional binding sites from unique regulatory regions: the Drosophila early developmental enhancers. , 2002, Genome research.

[22]  Michael Levine,et al.  Whole-Genome Analysis of Dorsal-Ventral Patterning in the Drosophila Embryo , 2002, Cell.

[23]  J. Casanova,et al.  In and out of Torso RTK signalling , 2003, The EMBO journal.

[24]  Dmitri Papatsenko,et al.  The role of binding site cluster strength in Bicoid-dependent patterning in Drosophila. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[25]  M. Sundaram,et al.  The love-hate relationship between Ras and Notch. , 2005, Genes & development.

[26]  D. Arnosti,et al.  Functional Interaction between the Drosophila Knirps Short Range Transcriptional Repressor and RPD3 Histone Deacetylase* , 2005, Journal of Biological Chemistry.

[27]  Willis X. Li Functions and mechanisms of receptor tyrosine kinase Torso signaling: Lessons from Drosophila embryonic terminal development , 2005, Developmental dynamics : an official publication of the American Association of Anatomists.

[28]  William J. R. Longabaugh,et al.  Computational representation of developmental genetic regulatory networks. , 2005, Developmental biology.

[29]  Leon Glass,et al.  Reverse Engineering the Gap Gene Network of Drosophila melanogaster , 2006, PLoS Comput. Biol..

[30]  Érica Morán,et al.  The Tailless Nuclear Receptor Acts as a Dedicated Repressor in the Early Drosophila Embryo , 2006, Molecular and Cellular Biology.

[31]  James Briscoe,et al.  The interpretation of morphogen gradients , 2006, Development.

[32]  Stanislav Y Shvartsman,et al.  Modeling the bicoid gradient: diffusion and reversible nuclear trapping of a stable protein. , 2007, Developmental biology.

[33]  U. Alon Network motifs: theory and experimental approaches , 2007, Nature Reviews Genetics.

[34]  Dmitri A. Papatsenko,et al.  ClusterDraw web server: a tool to identify and visualize clusters of binding motifs for transcription factors , 2007, Bioinform..

[35]  M. Metzstein,et al.  The zinc-finger protein Zelda is a key activator of the early zygotic genome in Drosophila , 2008, Nature.

[36]  S. Shvartsman,et al.  Nuclear Trapping Shapes the Terminal Gradient in the Drosophila Embryo , 2008, Current Biology.

[37]  Vsevolod J. Makeev,et al.  Motif discovery and motif finding from genome-mapped DNase footprint data , 2009, Bioinform..

[38]  James B. Brown,et al.  Developmental roles of 21 Drosophila transcription factors are determined by quantitative differences in binding to an overlapping set of thousands of genomic regions , 2009, Genome Biology.

[39]  Ho-Ryun Chung,et al.  Antagonistic action of Bicoid and the repressor Capicua determines the spatial limits of Drosophila head gene expression domains , 2009, Proceedings of the National Academy of Sciences.

[40]  Johannes Jaeger,et al.  Modelling the Drosophila embryo. , 2009, Molecular bioSystems.

[41]  Johannes Jaeger,et al.  Gene Circuit Analysis of the Terminal Gap Gene huckebein , 2009, PLoS Comput. Biol..

[42]  Yoosik Kim,et al.  Dynamics of the Dorsal morphogen gradient , 2009, Proceedings of the National Academy of Sciences.

[43]  Boris N. Kholodenko,et al.  Ligand-Specific c-Fos Expression Emerges from the Spatiotemporal Control of ErbB Network Dynamics , 2010, Cell.

[44]  Yoosik Kim,et al.  MAPK Substrate Competition Integrates Patterning Signals in the Drosophila Embryo , 2010, Current Biology.

[45]  Ho-Ryun Chung,et al.  Bicoid - morphogen function revisited , 2010, Fly.

[46]  Nathalie Dostatni,et al.  The Bicoid Morphogen System , 2010, Current Biology.

[47]  Kwanghun Chung,et al.  Gene regulation by MAPK substrate competition. , 2010, Developmental cell.

[48]  Steven M. Gallo,et al.  REDfly v3.0: toward a comprehensive database of transcriptional regulatory elements in Drosophila , 2010, Nucleic Acids Res..

[49]  Amy Tsurumi,et al.  STAT Is an Essential Activator of the Zygotic Genome in the Early Drosophila Embryo , 2011, PLoS genetics.

[50]  Z. Paroush,et al.  Capicua DNA-binding sites are general response elements for RTK signaling in Drosophila , 2011, Development.

[51]  Kwanghun Chung,et al.  A microfluidic array for large-scale ordering and orientation of embryos , 2010, Nature Methods.

[52]  Michael B. Eisen,et al.  Zelda Binding in the Early Drosophila melanogaster Embryo Marks Regions Subsequently Activated at the Maternal-to-Zygotic Transition , 2011, PLoS genetics.

[53]  Stephen Butcher,et al.  Temporal Coordination of Gene Networks by Zelda in the Early Drosophila Embryo , 2011, PLoS genetics.

[54]  Torso RTK controls Capicua degradation by changing its subcellular localization , 2012, Journal of Cell Science.

[55]  Hans Clevers,et al.  Wnt/β-Catenin and MAPK Signaling: Allies and Enemies in Different Battlefields , 2012, Science Signaling.

[56]  S. Small,et al.  A System of Repressor Gradients Spatially Organizes the Boundaries of Bicoid-Dependent Target Genes , 2012, Cell.