The thermal emission of the young and massive planet CoRoT-2b at 4.5 and 8 μm

We report measurements of the thermal emission of the young and massive planet CoRoT-2b at 4.5 and 8 μm with the Spitzer Infrared Array Camera (IRAC). Our measured occultation depths are 0.510 ± 0.042% at 4.5 and 0.41 ± 0.11 % at 8 μm. In addition to the CoRoT optical measurements, these planet/star flux ratios indicate a poor heat distribution on the night side of the planet and agree better with an atmosphere free of temperature inversion layer. Still, such an inversion is not definitely ruled out by the observations and a larger wavelength coverage is required to remove the current ambiguity. Our global analysis of CoRoT, Spitzer, and ground-based data confirms the high mass and large size of the planet with slightly revised values (M p = 3.47 ± 0.22 M J , R p = 1.466 ± 0.044 R J ). We find a small but significant offset in the timing of the occultation when compared to a purely circular orbital solution, leading to e cos ω = -0.00291 ± 0.00063 where e is the orbital eccentricity and ω is the argument of periastron. Constraining the age of the system to at most a few hundred Myr and assuming that the non-zero orbital eccentricity does not come from a third undetected body, we modeled the coupled orbital-tidal evolution of the system with various tidal Q values, core sizes, and initial orbital parameters. For Q' s = 10 5 -10 6 , our modeling is able to explain the large radius of CoRoT-2b if Q' p ≤ 10 5.5 through a transient tidal circularization and corresponding planet tidal heating event. Under this model, the planet will reach its Roche limit within 20 Myr at most.

[1]  C. Moutou,et al.  The secondary eclipse of CoRoT-1b , 2009 .

[2]  The transiting planet OGLE-TR-132b revisited with new spectroscopy and deconvolution photometry , 2007, astro-ph/0702192.

[3]  Joseph L. Hora,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 THERMAL EMISSION OF EXOPLANET XO-1B , 2022 .

[4]  Z. Q. John Lu,et al.  Bayesian methods for data analysis, third edition , 2010 .

[5]  S. Baliunas,et al.  Rotation, convection, and magnetic activity in lower main-sequence stars , 1984 .

[6]  Drake Deming,et al.  The hottest planet , 2007, Nature.

[7]  A. Claret,et al.  A new non-linear limb-darkening law for LTE stellar atmosphere models III , 2000 .

[8]  C. Moutou,et al.  Transiting exoplanets from the CoRoT space mission: III. The spectroscopic transit of CoRoT-Exo-2b with SOPHIE and HARPS , 2008, 0803.3209.

[9]  I. Snellen,et al.  Ground-based K-band detection of thermal emission from the exoplanet TrES-3b , 2009, 0901.1878.

[10]  David Charbonneau,et al.  The 3.6-8.0 μm Broadband Emission Spectrum of HD 209458b: Evidence for an Atmospheric Temperature Inversion , 2007, 0709.3984.

[11]  P. Magain,et al.  A deconvolution-based algorithm for crowded field photometry with unknown point spread function , 2007 .

[12]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[13]  Jason T. Wright,et al.  Chromospheric Ca II Emission in Nearby F, G, K, and M Stars , 2004, astro-ph/0402582.

[14]  I. Hubeny,et al.  Possible Solutions to the Radius Anomalies of Transiting Giant Planets , 2006 .

[15]  Antonino Francesco Lanza,et al.  Magnetic activity in the photosphere of CoRoT-Exo-2a. Active longitudes and short-term spot cycle in , 2008, 0811.0461.

[16]  Bradley P. Carlin,et al.  Bayesian Methods for Data Analysis , 2008 .

[17]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[18]  D. Ehrenreich,et al.  SEARCH FOR CARBON MONOXIDE IN THE ATMOSPHERE OF THE TRANSITING EXOPLANET HD 189733b , 2009, 0903.3405.

[19]  Kjell Eriksson,et al.  A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties , 2008, 0805.0554.

[20]  Michel Mayor,et al.  The Broadband Infrared Emission Spectrum of the Exoplanet HD 189733b , 2008, 0802.0845.

[21]  Claude Brezinski,et al.  Numerical recipes in Fortran (The art of scientific computing) : W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Cambridge Univ. Press, Cambridge, 2nd ed., 1992. 963 pp., US$49.95, ISBN 0-521-43064-X.☆ , 1993 .

[22]  Eric B. Ford,et al.  Improving the Efficiency of Markov Chain Monte Carlo for Analyzing the Orbits of Extrasolar Planets , 2005, astro-ph/0512634.

[23]  Richard Greenberg,et al.  Tidal Evolution of Close-in Extrasolar Planets , 2008 .

[24]  I. Hubeny,et al.  Theoretical Spectra and Light Curves of Close-in Extrasolar Giant Planets and Comparison with Data , 2007, 0709.4080.

[25]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[26]  S. Udry,et al.  Statistical properties of exoplanets. III. Planet properties and stellar multiplicity , 2004, astro-ph/0402664.

[27]  Z. Q. John Lu Bayesian methods for data analysis, third edition , 2010 .

[28]  L. Hebb,et al.  Improved parameters for the transiting hot Jupiters WASP-4b and WASP-5b , 2008, 0812.1998.

[29]  G. Fazio,et al.  The Infrared Array Camera (IRAC) for the Spitzer Space Telescope , 2004, astro-ph/0405616.

[30]  Adam Burrows,et al.  COUPLED EVOLUTION WITH TIDES OF THE RADIUS AND ORBIT OF TRANSITING GIANT PLANETS: GENERAL RESULTS , 2009, 0902.3998.

[31]  C. Surace,et al.  EXO-DAT: AN INFORMATION SYSTEM IN SUPPORT OF THE CoRoT/EXOPLANET SCIENCE , 2009 .

[32]  Sofia Randich,et al.  Time scales of Li evolution: A Homogeneous analysis of open clusters from ZAMS to late-MS , 2005 .

[33]  Drake Deming,et al.  Infrared radiation from an extrasolar planet , 2005, Nature.

[34]  David Charbonneau,et al.  Theoretical Spectral Models of the Planet HD 209458b with a Thermal Inversion and Water Emission Bands , 2007, 0709.3980.

[35]  et al,et al.  Transiting exoplanets from the CoRoT space mission . VI. CoRoT-Exo-3b: the first secure inhabitant of the brown-dwarf desert , 2008, 0810.0919.

[36]  Peter H. Hauschildt,et al.  Phase-dependent Properties of Extrasolar Planet Atmospheres , 2005 .

[37]  Joseph L. Hora,et al.  A ccepted forpublication in The A strophysicalJournal D etection of T herm alE m ission of X O -2b: E vidence for a W eak Tem perature Inversion , 2022 .

[38]  E. Agol,et al.  On detecting terrestrial planets with timing of giant planet transits , 2004 .

[39]  R. Nichol,et al.  Cosmological parameters from SDSS and WMAP , 2003, astro-ph/0310723.

[40]  David Charbonneau,et al.  Detection of Thermal Emission from an Extrasolar Planet , 2005 .

[41]  T. Guillot,et al.  The secondary eclipse of the transiting exoplanet CoRoT-2b , 2009, 0906.2814.

[42]  Nuno C. Santos,et al.  Extrasolar Planets: Statistical properties of exoplanets , 2007 .

[43]  Richard Greenberg,et al.  Tidal Heating of Extrasolar Planets , 2008, 0803.0026.

[44]  P. Gregory A Bayesian Analysis of Extrasolar Planet Data for HD 73526 , 2005 .

[45]  W. D. Cochran,et al.  Kepler’s Optical Phase Curve of the Exoplanet HAT-P-7b , 2009, Science.

[46]  Michel Mayor,et al.  The Rossiter-McLaughlin effect of CoRoT-3b and HD 189733b , 2009, 0907.2956.

[47]  R. Scuflaire,et al.  CLÉS, Code Liégeois d’Évolution Stellaire , 2007, 0712.3471.

[48]  Pin Chen,et al.  Submitted to the Astrophysical Journal Letters Molecular Signatures in the Near Infrared Dayside Spectrum of , 2022 .

[49]  S. Baliunas,et al.  Stellar rotation in lower main-sequence stars measured from time variations in H and K emission-line fluxes. I - Initial results , 1981 .

[50]  Richard S. Freedman,et al.  A Unified Theory for the Atmospheres of the Hot and Very Hot Jupiters: Two Classes of Irradiated Atmospheres , 2007, 0710.2558.

[51]  Gilles Chabrier,et al.  An Equation of State for Low-Mass Stars and Giant Planets , 1995 .

[52]  Mercedes Lopez-Morales,et al.  Ground-based secondary eclipse detection of the very-hot Jupiter OGLE-TR-56b , 2009 .

[53]  Drake Deming,et al.  THE BROADBAND INFRARED EMISSION SPECTRUM OF THE EXOPLANET TrES-3 , 2009, 0909.5221.

[54]  C. Moutou,et al.  High accuracy transit photometry of the planet OGLE-TR-113b with a new deconvolution-based method , 2006 .

[55]  Steven Soter,et al.  Q in the solar system , 1966 .

[56]  R. Paul Butler,et al.  Measurement of Spin-Orbit Alignment in an Extrasolar Planetary System , 2005, astro-ph/0504555.

[57]  R. Mardling,et al.  Long-term tidal evolution of short-period planets with companions , 2007, 0706.0224.

[58]  E. Agol,et al.  Analytic Light Curves for Planetary Transit Searches , 2002, astro-ph/0210099.

[59]  Alvaro Gimenez,et al.  Equations for the Analysis of the Rossiter-MCLaughlin Effect in Extrasolar Planetary Transits , 2006 .

[60]  David Charbonneau,et al.  The transit light curve project. I. Four consecutive transits of the exoplanet XO-1b , 2006 .

[61]  R. G. West,et al.  An orbital period of 0.94 days for the hot-Jupiter planet WASP-18b , 2009, Nature.

[62]  I. Hubeny,et al.  A Possible Bifurcation in Atmospheres of Strongly Irradiated Stars and Planets , 2003 .

[63]  Observatoire de Geneve,et al.  VLT transit and occultation photometry for the bloated planet CoRoT-1b , 2009, 0905.4571.

[64]  E. Wright,et al.  The Spitzer Space Telescope Mission , 2004, astro-ph/0406223.

[65]  A. Burrows,et al.  Bright optical day-side emission from extrasolar planet CoRoT-2b , 2010 .

[66]  Frederic Pont,et al.  The effect of red noise on planetary transit detection , 2006, astro-ph/0608597.

[67]  P. Stetson DAOPHOT: A COMPUTER PROGRAM FOR CROWDED-FIELD STELLAR PHOTOMETRY , 1987 .

[68]  A. Burrows,et al.  DETECTION OF A TEMPERATURE INVERSION IN THE BROADBAND INFRARED EMISSION SPECTRUM OF TrES-4 , 2008, 0810.0021.

[69]  Matthew J. Holman,et al.  The Use of Transit Timing to Detect Terrestrial-Mass Extrasolar Planets , 2005, Science.

[70]  A. Claret,et al.  A new non-linear limb-darkening law for LTE stellar atmosphere models III - Sloan filters: Calculations for –5.0 ≤ log [M/H] ≤ +1, 2000 K ≤ T$\mathsf{_{eff}}$ ≤ 50 000 K at several surface gravities , 2004 .

[71]  J. Fortney,et al.  INFLATING AND DEFLATING HOT JUPITERS: COUPLED TIDAL AND THERMAL EVOLUTION OF KNOWN TRANSITING PLANETS , 2009, 0907.1268.

[72]  S. Albrecht,et al.  The changing phases of extrasolar planet CoRoT-1b , 2009, Nature.

[73]  S. Barnes Accepted for publication in The Astrophysical Journal Ages for illustrative field stars using gyrochronology: viability, limitations and errors , 2022 .

[74]  OBSERVATIONAL EVIDENCE FOR TIDAL DESTRUCTION OF EXOPLANETS , 2009, 0904.1170.