Fast integration of highly oscillatory integrals with exotic oscillators
暂无分享,去创建一个
[1] J. R. Webster,et al. A method to generate generalized quadrature rule for oscillatory integrals , 2000 .
[2] Sheehan Olver,et al. Moment-free numerical approximation of highly oscillatory integrals with stationary points , 2007, European Journal of Applied Mathematics.
[3] Sheehan Olver,et al. Numerical approximation of vector-valued highly oscillatory integrals , 2007 .
[4] Shuhuang Xiang,et al. Numerical quadrature for Bessel transformations , 2008 .
[5] Robert Piessens,et al. Automatic computation of Bessel function integrals , 1984 .
[6] S. Xiang. Efficient Filon-type methods for $$\int_a^bf(x)\,{\rm e}^{{\rm i}\omega g(x)}\,{\rm d}x$$ , 2007 .
[7] L. Filon. III.—On a Quadrature Formula for Trigonometric Integrals. , 1930 .
[8] Shuhuang Xiang,et al. Efficient Filon-type methods for (∫abf(x), eiωg(x), dx) , 2007, Numerische Mathematik.
[9] Arieh Iserles,et al. Highly Oscillatory Quadrature and Its Applications , 2005 .
[10] Yudell L. Luke,et al. On the computation of oscillatory integrals , 1954, Mathematical Proceedings of the Cambridge Philosophical Society.
[11] Jean-François Richard,et al. Methods of Numerical Integration , 2000 .
[12] Daan Huybrechs,et al. A Sparse Discretization for Integral Equation Formulations of High Frequency Scattering Problems , 2007, SIAM J. Sci. Comput..
[13] A. Iserles,et al. On Quadrature Methods for Highly Oscillatory Integrals and Their Implementation , 2004 .
[14] Philip Rabinowitz,et al. Methods of Numerical Integration , 1985 .
[15] David Levin,et al. Procedures for computing one- and two-dimensional integrals of functions with rapid irregular oscillations , 1982 .
[16] Lloyd N. Trefethen,et al. Is Gauss Quadrature Better than Clenshaw-Curtis? , 2008, SIAM Rev..
[17] Sheehan Olver,et al. Moment-free numerical integration of highly oscillatory functions , 2006 .
[18] R. Piessens,et al. Modified clenshaw-curtis method for the computation of Bessel function integrals , 1983 .
[19] E. A. Flinn. A Modification of Filon's Method of Numerical Integration , 1960, JACM.
[20] Daan Huybrechs,et al. On the Evaluation of Highly Oscillatory Integrals by Analytic Continuation , 2006, SIAM J. Numer. Anal..
[21] Shuhuang Xiang,et al. Numerical analysis of a fast integration method for highly oscillatory functions , 2007 .
[22] Shuhuang Xiang,et al. On generalized quadrature rules for fast oscillatory integrals , 2008, Appl. Math. Comput..
[23] A. Iserles,et al. Highly Oscillatory Quadrature: The Story soFar , 2006 .
[24] A. Iserles,et al. Efficient quadrature of highly oscillatory integrals using derivatives , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[25] L. Milne‐Thomson. A Treatise on the Theory of Bessel Functions , 1945, Nature.
[26] David Levin,et al. Fast integration of rapidly oscillatory functions , 1996 .
[27] G. A. Evans,et al. Some theoretical aspects of generalised quadrature methods , 2003, J. Complex..
[28] Timothy S. Murphy,et al. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .
[29] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .