Chebyshev-Legendre pseudo-spectral method for the generalised Burgers-Fisher equation

Abstract In this paper, we consider numerical approximation of generalised Burgers–Fisher equation using the pseudo-spectral method. For the time discretization we apply Crank–Nicolson /leapfrog scheme. The space discretization is based on Legendre Galerkin formulation while the Chebyshev–Gauss–Lobatto (CGL) nodes are used in practical computation, which is called “Chebyshev–Legendre” method. The stability and convergence are rigorously set up. Numerical experiments are presented to demonstrate the effectiveness of the method and to confirm the theoretical results.

[1]  Heping Ma,et al.  Chebyshev--Legendre Super Spectral Viscosity Method for Nonlinear Conservation Laws , 1998 .

[2]  Philippe Emplit,et al.  Convection versus dispersion in optical bistability , 1999 .

[3]  Jie Shen,et al.  Spectral and High-Order Methods with Applications , 2006 .

[4]  J. Roessler,et al.  Numerical solution of the 1 + 2 dimensional Fisher's equation by finite elements and the Galerkin method , 1997 .

[5]  A. Golbabai,et al.  A numerical solution for non-classical parabolic problem based on Chebyshev spectral collocation method , 2007, Appl. Math. Comput..

[6]  Hassan N. A. Ismail,et al.  Adomian decomposition method for Burger's-Huxley and Burger's-Fisher equations , 2004, Appl. Math. Comput..

[7]  Heping Ma,et al.  Optimal Error Estimates of the Chebyshev-Legendre Spectral Method for Solving the Generalized Burgers Equation , 2003, SIAM J. Numer. Anal..

[8]  José Canosa,et al.  NUMERICAL SOLUTION OF FISHER'S EQUATION , 1974 .

[9]  Abdul-Majid Wazwaz,et al.  The tanh method for generalized forms of nonlinear heat conduction and Burgers-Fisher equations , 2005, Appl. Math. Comput..

[10]  Ronald E. Mickens,et al.  Relation between the time and space step‐sizes in nonstandard finite‐difference schemes for the Fisher equation , 1997 .

[11]  Jie Shen,et al.  Efficient Spectral-Galerkin Method I. Direct Solvers of Second- and Fourth-Order Equations Using Legendre Polynomials , 1994, SIAM J. Sci. Comput..

[12]  D. M. Sloan,et al.  Numerical Solution of Fisher's Equation Using a Moving Mesh Method , 1998 .

[13]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[14]  Riordan,et al.  Fluctuations and stability of fisher waves. , 1995, Physical review letters.

[15]  Weiwei Sun,et al.  A Legendre-Petrov-Galerkin and Chebyshev Collocation Method for Third-Order Differential Equations , 2000, SIAM J. Numer. Anal..

[16]  R. Fisher THE WAVE OF ADVANCE OF ADVANTAGEOUS GENES , 1937 .

[17]  Rizwan Uddin Comparison of the Nodal Integral Method and Nonstandard Finite-Difference Schemes for the Fisher Equation , 2001, SIAM J. Sci. Comput..

[18]  John J. Tyson,et al.  On Traveling Wave Solutions of Fisher's Equation in Two Spatial Dimensions , 1999, SIAM J. Appl. Math..

[19]  D. A. Larson Transient Bounds and Time-Asymptotic Behavior of Solutions to Nonlinear Equations of Fisher Type , 1978 .

[20]  James D. Murray Mathematical Biology: I. An Introduction , 2007 .

[21]  Sanjay Puri,et al.  A new numerical scheme for the fisher equation , 1990 .

[22]  Bradley K. Alpert,et al.  A Fast Algorithm for the Evaluation of Legendre Expansions , 1991, SIAM J. Sci. Comput..

[23]  Ronald E. Mickens,et al.  A best finite‐difference scheme for the fisher equation , 1994 .

[25]  David Gottlieb,et al.  The Chebyshev-Legendre method: implementing Legendre methods on Chebyshev points , 1994 .

[26]  S. Tang,et al.  Numerical study of Fisher's equation by a Petrov-Galerkin finite element method , 1991, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[27]  Dogan Kaya,et al.  A numerical simulation and explicit solutions of the generalized Burgers-Fisher equation , 2004, Appl. Math. Comput..

[28]  Jöran Bergh,et al.  Interpolation Spaces: An Introduction , 2011 .

[29]  Hassan N. A. Ismail,et al.  A restrictive Padé approximation for the solution of the generalized Fisher and Burger-Fisher equations , 2004, Appl. Math. Comput..

[30]  B. Guo,et al.  Spectral Methods and Their Applications , 1998 .

[31]  Kamel Al-Khaled,et al.  Numerical study of Fisher's reaction–diffusion equation by the Sinc collocation method , 2001 .

[32]  Graham F. Carey,et al.  Least‐squares finite element approximation of Fisher's reaction–diffusion equation , 1995 .

[33]  Idris Dag,et al.  A B-spline algorithm for the numerical solution of Fisher's equation , 2008, Kybernetes.

[34]  Wen Zhang,et al.  The Chebyshev–Legendre collocation method for a class of optimal control problems , 2008, Int. J. Comput. Math..

[35]  Mohammad Javidi Spectral collocation method for the solution of the generalized Burger-Fisher equation , 2006, Appl. Math. Comput..