Multi-objective optimal design of laminated composite skirt using hybrid NSGA

[1]  A. Rama Mohan Rao,et al.  Multi-objective optimal design of laminate composite shells and stiffened shells , 2012 .

[2]  Leena Jain,et al.  Traveling Salesman Problem: A Case Study , 2012, BIOINFORMATICS 2012.

[3]  M. H. Sadr,et al.  Stacking sequence optimization of composite plates for maximum fundamental frequency using particle swarm optimization algorithm , 2012 .

[4]  A. Rama Mohan Rao,et al.  Optimal design of stiffened laminate composite cylinder using a hybrid SFL algorithm , 2012 .

[5]  A. Rama Mohan Rao,et al.  Discrete hybrid PSO algorithm for design of laminate composites with multiple objectives , 2011 .

[6]  A. Rama Mohan Rao,et al.  A Meta‐Heuristic Algorithm for Multi‐Objective Optimal Design of Hybrid Laminate Composite Structures , 2010, Comput. Aided Civ. Infrastructure Eng..

[7]  A. Rama Mohan Rao,et al.  Multi-objective Optimal Design of Hybrid Laminate Composite Structures Using Scatter Search , 2009 .

[8]  Jun Wu,et al.  Improving NSGA-II Algorithm Based on Minimum Spanning Tree , 2008, SEAL.

[9]  Xiaorong He,et al.  Multi-objective optimization for the periodic operation of the naphtha pyrolysis process using a new parallel hybrid algorithm combining NSGA-II with SQP , 2008, Comput. Chem. Eng..

[10]  Kalyanmoy Deb,et al.  A robust evolutionary framework for multi-objective optimization , 2008, GECCO '08.

[11]  M. Teshnehlab,et al.  Improving the Non-dominate Sorting Genetic Algorithm for Multi-objective Optimization , 2007, 2007 International Conference on Computational Intelligence and Security Workshops (CISW 2007).

[12]  A. Rama Mohan Rao,et al.  A scatter search algorithm for stacking sequence optimisation of laminate composites , 2005 .

[13]  M. Lahanas,et al.  A hybrid evolutionary algorithm for multi-objective anatomy-based dose optimization in high-dose-rate brachytherapy. , 2003, Physics in medicine and biology.

[14]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[15]  Sarp Adali,et al.  Minimum sensitivity design of laminated shells under axial load and external pressure , 2001 .

[16]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[17]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[18]  R. Haftka,et al.  Genetic optimization of two-material composite laminates , 2001 .

[19]  A. A. Smerdov,et al.  A computational study in optimum formulations of optimization problems on laminated cylindrical shells for buckling II. Shells under external pressure , 2000 .

[20]  Akira Todoroki,et al.  Improvement of Design Reliability for Buckling Load Maximization of Composite Cylinder Using Genetic Algorithm with Recessive-Gene-Like Repair , 1999 .

[21]  Satchi Venkataraman,et al.  Optimization of Composite Panels - A Review , 1999 .

[22]  Jian-Bo Yang,et al.  Multiple Criteria Decision Support in Engineering Design , 1998 .

[23]  Mark Walker,et al.  Minimum weight design of composite hybrid shells via symbolic computation , 1997 .

[24]  Mark Walker,et al.  Multiobjective design of laminated cylindrical shells for maximum torsional and axial buckling loads , 1997 .

[25]  Mark Walker,et al.  Multiobjective optimization of laminated plates for maximum prebuckling, buckling and postbuckling strength using continuous and discrete ply angles , 1996 .

[26]  Achille Messac,et al.  Physical programming - Effective optimization for computational design , 1996 .

[27]  Y. Xie,et al.  Buckling optimization of hybrid-fiber multilayer-sandwich cylindrical shells under external lateral pressure , 1996 .

[28]  R. Zimmermann,et al.  Quick optimum buckling design of axially compressed, fiber composite cylindrical shells.(peer review) , 1995 .

[29]  S. Adali,et al.  Lay-up optimization of laminated plates under buckling loads , 1995 .

[30]  Francis Mard,et al.  Design, manufacture and test of the composite case for ERINT-1 solid rocket motor , 1993 .

[31]  R. Haftka,et al.  Optimization of laminate stacking sequence for buckling load maximization by genetic algorithm , 1993 .

[32]  Biswajit Tripathy,et al.  Stiffened composite axisymmetric shells-optimum lay-up for buckling by ranking , 1993 .

[33]  T. R. Tauchert,et al.  Multiobjective Design of Symmetrically Laminated Plates , 1992 .

[34]  George E. Weeks,et al.  Optimum design of composite laminates using genetic algorithms , 1992 .

[35]  S. Peters,et al.  Filament Winding: Composite Structure Fabrication , 1991 .

[36]  G. Sun,et al.  A practical approach to optimal design of laminated cylindrical shells for buckling , 1989 .

[37]  J. S. Hansen,et al.  Optimal Design of Laminated-Composite Circular-Cylindrical Shells Subjected to Combined Loads , 1988 .

[38]  R. Reiss,et al.  Maximum Frequency Design of Symmetric Angle-ply Laminates , 1987 .

[39]  J. Onoda,et al.  Optimal laminate configurations of cylindrical shells for axial buckling , 1985 .

[40]  R. Grover,et al.  Development of an advanced composite rocket motor case for internal and external load environments , 1984 .

[41]  Michael J. Pappas,et al.  Optimal laminated composite shells for buckling and vibration , 1983 .

[42]  B. D. Agarwal,et al.  Analysis and Performance of Fiber Composites , 1980 .

[43]  C. Bert Optimal design of a composite-material plate to maximize its fundamental frequency , 1977 .