Deconvolution of images and spectra

Convolution and related concepts, P.A. Jansson distortion of optical spectra, P.A. Jansson traditional linear deconvolution methods, P.A. Jansson modern constrained nonlinear methods, P.A. Jansson convergence of relaxation algorithms, P.C. Crilly instrumental considerations, W.E. Blass and G.W. Halsey deconvolution examples, P.C. Crilly, W.E. Blass and G.W. Halsey application to electron spectroscopy for chemical analysis, P.A. Jansson and R.D. Davies decon-volution in optical microscopy, J.R. Swedlow, J.W. Sedat, and D.A. Agard deconvolution of HST images and spectra, R.J. Hanisch, R.L. White, and R.L. Gilliland maximum likelihood estimates of spectra, B.R. Frieden fourier spectrum continuation, S.J. Howard minimum negativity fourier spectrum continuation, S.J. Howard alternating projection onto convex sets, R.J. Marks, II.

[1]  John von Neumann,et al.  The geometry of orthogonal spaces , 1950 .

[2]  D. Slepian,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — II , 1961 .

[3]  Boris Polyak,et al.  The method of projections for finding the common point of convex sets , 1967 .

[4]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[5]  Arch W. Naylor,et al.  Linear Operator Theory in Engineering and Science , 1971 .

[6]  R. Gerchberg Super-resolution through Error Energy Reduction , 1974 .

[7]  C. R. Subrahmanya,et al.  A new method of image restoration , 1975 .

[8]  R.N. Bracewell,et al.  Signal analysis , 1978, Proceedings of the IEEE.

[9]  Dante C. Youla,et al.  Generalized Image Restoration by the Method of Alternating Orthogonal Projections , 1978 .

[10]  Samuel J. Howard,et al.  Continuation of discrete Fourier spectra using a minimum-negativity constraint , 1981 .

[11]  Robert J. Marks,et al.  Gerchberg-Type Linear Deconvolution And Extrapolation Algorithms , 1984, Other Conferences.

[12]  Transformations in optical signal processing , 1984 .

[13]  R. Marks,et al.  Signal synthesis in the presence of an inconsistent set of constraints , 1985 .

[14]  Fast algorithm for implementing the minimum-negativity constraint for Fourier spectrum extrapolation. , 1986, Applied optics.

[15]  D. Youla,et al.  Extensions of a result on the synthesis of signals in the presence of inconsistent constraints , 1986 .

[16]  B. Frieden,et al.  Image recovery: Theory and application , 1987, IEEE Journal of Quantum Electronics.

[17]  Robert J. Marks Class of continuous level associative memory neural nets , 1987 .

[18]  R. Marks,et al.  Convergence of Howard's minimum-negativity-constraint extrapolation algorithm , 1988 .

[19]  S J Howard Fast algorithm for implementing the minimum-negativity constraint for Fourier spectrum extrapolation. Part 2. , 1988, Applied optics.

[20]  Henry Stark,et al.  Signal recovery with similarity constraints , 1989 .

[21]  Robert J. Marks,et al.  Alternating projection neural networks , 1989 .

[22]  Robert J. Marks,et al.  Kernel synthesis for generalized time-frequency distributions using the method of projections onto convex sets , 1990 .

[23]  Henry Stark,et al.  Iterative and one-step reconstruction from nonuniform samples by convex projections , 1990 .

[24]  H Stark,et al.  Projection method formulations of Hopfield-type associative memory neural networks. , 1990, Applied optics.

[25]  R. Marks Introduction to Shannon Sampling and Interpolation Theory , 1990 .

[26]  Robert J. Marks,et al.  Homogeneous alternating projection neural networks , 1991, Neurocomputing.

[27]  Henry Stark,et al.  Learning in neural nets using projection methods , 1991, Optical Society of America Annual Meeting.

[28]  P. L. Combettes,et al.  Foundation of set theoretic estimation , 1993 .

[29]  S. Oh,et al.  Alternating projection onto fuzzy convex sets , 1993, [Proceedings 1993] Second IEEE International Conference on Fuzzy Systems.

[30]  Robert J. Marks,et al.  Advanced topics in Shannon sampling and interpolation theory , 1993 .

[31]  C. Ramon,et al.  Resolution enhancement of biomagnetic images using the method of alternating protections , 1993, IEEE Transactions on Biomedical Engineering.

[32]  Robert J. Marks,et al.  Kernel synthesis for generalized time-frequency distributions using the method of alternating projections onto convex sets , 1994, IEEE Trans. Signal Process..

[33]  Sankar K. Pal,et al.  Fuzzy models for pattern recognition , 1992 .

[34]  R. Marks,et al.  Fuzzy and extra crisp alternating projection onto convex sets (POCS) , 1995, Proceedings of 1995 IEEE International Conference on Fuzzy Systems..