Multiobjective fuzzy regression with central tendency and possibilistic properties

A multiobjective fuzzy regression model (MOFR) is developed. This MOFR model combines central tendency and possibilistic properties of statistical and fuzzy regressions and overcomes several shortcomings of these two approaches. A new class of distance measure for two intervals that takes into account all the points in both intervals is introduced. The methodology is illustrated by numerical examples.

[1]  Hideo Tanaka,et al.  Fuzzy linear regression combining central tendency and possibilistic properties , 1997, Proceedings of 6th International Fuzzy Systems Conference.

[2]  Phil Diamond,et al.  Fuzzy least squares , 1988, Inf. Sci..

[3]  P. Diamond,et al.  Extended fuzzy linear models and least squares estimates , 1997 .

[4]  Simon French,et al.  Multi-Objective Decision Analysis with Engineering and Business Applications , 1983 .

[5]  L. Duckstein,et al.  Multiobjective Analysis in Water Resources Part II — A New Typology of MCDM Techniques , 1993 .

[6]  W. Steiger,et al.  Least Absolute Deviations: Theory, Applications and Algorithms , 1984 .

[7]  Ram R. Bishu,et al.  Evaluation of fuzzy linear regression models by comparing membership functions , 1998, Fuzzy Sets Syst..

[8]  Sándor József On the effect of linear data transformations in possibilistic fuzzy linear regression , 1992 .

[9]  Masatoshi Sakawa,et al.  Multiobjective fuzzy linear regression analysis and its application , 1990 .

[10]  Masatoshi Sakawa,et al.  Multiobjective fuzzy linear regression analysis for fuzzy input-output data , 1992 .

[11]  R. Słowiński Fuzzy sets in decision analysis, operations research and statistics , 1999 .

[12]  William H. Woodall,et al.  Properties of certain fuzzy linear regression methods , 1994 .

[13]  A. Celmins Least squares model fitting to fuzzy vector data , 1987 .

[14]  H. Späth Mathematical algorithms for linear regression , 1991 .

[15]  Witold Pedrycz,et al.  Evaluation of fuzzy linear regression models , 1991 .

[16]  A. Celmins Multidimensional least-squares fitting of fuzzy models , 1987 .

[17]  Philippe Vincke,et al.  Multicriteria Decision-Aid , 1992 .

[18]  Lucien Duckstein,et al.  Multi-objective fuzzy regression: a general framework , 2000, Comput. Oper. Res..

[19]  Mark Gershon,et al.  Techniques for multiobjective decision making in systems management , 1986 .

[20]  H. Tanka Fuzzy data analysis by possibilistic linear models , 1987 .

[21]  V. Yevjevich,et al.  Stochastic hydrology and its use in water resources systems simulation and optimization , 1993 .

[22]  Ertunga Cem Ozelkan Multi-objective fuzzy regression applied to the calibration of conceptual rainfall-runoff models , 1997 .

[23]  Didier Dubois,et al.  Fuzzy sets and systems ' . Theory and applications , 2007 .

[24]  Georg Peters Fuzzy linear regression with fuzzy intervals , 1994 .

[25]  Caroline M. Eastman,et al.  Response: Introduction to fuzzy arithmetic: Theory and applications : Arnold Kaufmann and Madan M. Gupta, Van Nostrand Reinhold, New York, 1985 , 1987, Int. J. Approx. Reason..

[26]  Joyce Snell,et al.  6. Alternative Methods of Regression , 1996 .

[27]  Carlo Bertoluzza,et al.  On a new class of distances between fuzzy numbers , 1995 .

[28]  William H. Woodall,et al.  Further examination of fuzzy linear regression , 1996, Fuzzy Sets Syst..

[29]  Ping-Teng Chang,et al.  A generalized fuzzy weighted least-squares regression , 1996, Fuzzy Sets Syst..

[30]  P. Diamond,et al.  Fuzzy regression analysis , 1999 .