On the Complexity of Tree Embedding Problems

The papier is relative to how a tree can be embedded into another while minimizing various costs. It considers the general complexity of the problem and shows that there exist polynomial time algorithms hich determine whether a graph can be embedded into a complete binary tree with fixed dilation k, or fixed congestion cost k

[1]  Eitan M. Gurari,et al.  Improved Dynamic Programming Algorithms for Bandwidth Minimization and the MinCut Linear Arrangement Problem , 1984, J. Algorithms.

[2]  Arnold L. Rosenberg,et al.  On Embedding Rectangular Grids in Square Grids , 1982, IEEE Transactions on Computers.

[3]  Shai SIMONSON Routing with Critical Paths , 1990, Inf. Process. Lett..

[4]  Arnold L. Rosenberg,et al.  Cost Trade-offs in Graph Embeddings, with Applications , 1983, JACM.

[5]  A. Weinberger Large Scale Integration of MOS Complex Logic: A Layout Method , 1967 .

[6]  Arnold L. Rosenberg,et al.  Encoding Data Structures in Trees , 1979, JACM.

[7]  David S. Johnson,et al.  COMPLEXITY RESULTS FOR BANDWIDTH MINIMIZATION , 1978 .

[8]  Jia-Wei Hong,et al.  Graphs that are Almost Binary Trees , 1982, SIAM J. Comput..

[9]  Arnold L. Rosenberg,et al.  Three-Dimensional VLSI: a case study , 1983, JACM.

[10]  Arnold L. Rosenberg,et al.  Optimal simulations of tree machines , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[11]  James B. Saxe,et al.  Dynamic-Programming Algorithms for Recognizing Small-Bandwidth Graphs in Polynomial Time , 1980, SIAM J. Algebraic Discret. Methods.

[12]  Mihalis Yannakakis,et al.  A polynomial algorithm for the MIN CUT linear arrangement of trees , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[13]  A.D. Lopez,et al.  A Dense Gate Matrix Layout Method for MOS VLSI , 1980, IEEE Journal of Solid-State Circuits.