Interfacial mixing effect in a promising skyrmionic material: Ferrimagnetic Mn4N

Interfacial mixing of elements is a well-known phenomenon found in thin film deposition. For thin-film magnetic heterostructures, interfacial compositional inhomogeneities can have drastic effects on the resulting functionalities. As such, care must be taken to characterize the compositional and magnetic properties of thin films intended for device use. Recently, ferrimagnetic Mn4N thin films have drawn considerable interest due to exhibiting perpendicular magnetic anisotropy, high domain-wall mobility, and good thermal stability. In this study, we employed x-ray photoelectron spectroscopy (XPS) and polarized neutron reflectometry (PNR) measurements to investigate the interfaces of an epitaxially grown MgO/Mn4N/Pt trilayer deposited at 450 °C. XPS revealed the thickness of elemental mixing regions of near 5 nm at both interfaces. Using PNR, we found that these interfaces exhibit essentially zero net magnetization at room temperature. Despite the high-temperature deposition at 450 °C, the thickness of mixing regions is comparable to those observed in magnetic films deposited at room temperature. Micromagnetic simulations show that this interfacial mixing should not deter the robust formation of small skyrmions, consistent with a recent experiment. The results obtained are encouraging in terms of the potential of integrating thermally stable Mn4N into future spintronic devices.

[1]  S. Poon,et al.  Tunable magnetic skyrmions in ferrimagnetic Mn4N , 2021, Applied Physics Letters.

[2]  F. d’Acapito,et al.  The role of chemical and microstructural inhomogeneities on interface magnetism , 2021, Nanotechnology.

[3]  Huaiwu Zhang,et al.  Interfacial chemical states and recoverable spin pumping in YIG/Pt , 2021 .

[4]  S. Poon,et al.  Rare-earth-free ferrimagnetic Mn4N sub-20 nm thin films as potential high-temperature spintronic material , 2021 .

[5]  L. Vila,et al.  Current-Driven Domain Wall Dynamics in Ferrimagnetic Nickel-Doped Mn4N Films: Very Large Domain Wall Velocities and Reversal of Motion Direction across the Magnetic Compensation Point. , 2021, Nano letters.

[6]  T. Suemasu,et al.  Perpendicular magnetic anisotropy in ferrimagnetic Mn4N films grown on (LaAlO3)0.3(Sr2TaAlO6)0.7(0 0 1) substrates by molecular beam epitaxy , 2020 .

[7]  T. Suemasu,et al.  Strong correlation between uniaxial magnetic anisotropic constant and in-plane tensile strain in Mn4N epitaxial films , 2020 .

[8]  S. Poon,et al.  Tuning interfacial Dzyaloshinskii-Moriya interactions in thin amorphous ferrimagnetic alloys , 2019, Scientific Reports.

[9]  Y. Miura,et al.  Contributions of magnetic structure and nitrogen to perpendicular magnetocrystalline anisotropy in antiperovskite ɛ−Mn4N , 2019, Physical Review Materials.

[10]  Huaiwu Zhang,et al.  Effect of Interfacial Roughness Spin Scattering on the Spin Current Transport in YIG/NiO/Pt Heterostructures. , 2019, ACS applied materials & interfaces.

[11]  A. Fert,et al.  Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets , 2019, Nature Materials.

[12]  S. Poon,et al.  Thickness dependence of ferrimagnetic compensation in amorphous rare-earth transition-metal thin films , 2018, Applied Physics Letters.

[13]  William Ratcliff,et al.  reductus: a stateless Python data reduction service with a browser front end , 2018, Journal of Applied Crystallography.

[14]  M. Stiles,et al.  Synthetic antiferromagnetic spintronics , 2018, Nature Physics.

[15]  M. Stiles,et al.  Interface-Generated Spin Currents. , 2018, Physical review letters.

[16]  B. Maranville,et al.  Nanoscale magnetic localization in exchange strength modulated ferromagnets , 2017, Physical Review B.

[17]  B. Maranville,et al.  Distributed Error-Function Roughness in Refl1d Reflectometry Fitting Program , 2017, 1801.04975.

[18]  A. Smith,et al.  Contribution from Ising domains overlapping out-of-plane to perpendicular magnetic anisotropy in Mn4N thin films on MgO(001) , 2017 .

[19]  B. Diény,et al.  Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications , 2017 .

[20]  M. Albrecht,et al.  Ferrimagnetic Tb–Fe Alloy Thin Films: Composition and Thickness Dependence of Magnetic Properties and All-Optical Switching , 2016, Front. Mater..

[21]  M. Meinert Exchange interactions and Curie temperatures of the tetrametal nitrides Cr4N, Mn4N, Fe4N, Co4N, and Ni4N , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[22]  D. Schmool,et al.  Interfacial Structure Dependent Spin Mixing Conductance in Cobalt Thin Films. , 2015, Physical review letters.

[23]  M. Tsunoda,et al.  Perpendicular magnetic anisotropy of Mn4N films fabricated by reactive sputtering method , 2015 .

[24]  T. Devolder,et al.  Interfacial Dzyaloshinskii-Moriya interaction in perpendicularly magnetized Pt/Co/AlO x ultrathin films measured by Brillouin light spectroscopy , 2015, 1503.00372.

[25]  A. Fert,et al.  Anatomy of Dzyaloshinskii-Moriya Interaction at Co/Pt Interfaces. , 2015, Physical review letters.

[26]  A. Chikamatsu,et al.  Metallic transport and large anomalous Hall effect at room temperature in ferrimagnetic Mn4N epitaxial thin film , 2014 .

[27]  C. Marrows,et al.  Measuring and tailoring the Dzyaloshinskii-Moriya interaction in perpendicularly magnetized thin films , 2014 .

[28]  T. Suemasu,et al.  Perpendicular magnetic anisotropy of Mn4N films on MgO(001) and SrTiO3(001) substrates , 2014 .

[29]  Chanyong Hwang,et al.  Magnetic dead layer at the interface between a Co film and the topological insulator Bi2Se3 , 2012 .

[30]  F. Heinrich,et al.  Phase-sensitive specular neutron reflectometry for imaging the nanometer scale composition depth profile of thin-film materials , 2012 .

[31]  B. Diény,et al.  First-principles investigation of the very large perpendicular magnetic anisotropy at Fe|MgO and Co|MgO interfaces , 2010, 1011.5667.

[32]  S. Lee,et al.  Magnetic Dead Layer in Amorphous CoFeB Layers with Various Top and Bottom Structures , 2010 .

[33]  S. Parkin,et al.  Magnetic Tunnel Junctions , 2007 .

[34]  Jian-Gang Zhu,et al.  Magnetic tunnel junctions , 2006 .

[35]  Ming-Jinn Tsai,et al.  Interfacial and annealing effects on magnetic properties of CoFeB thin films , 2006 .

[36]  A. Panchula,et al.  Magnetically engineered spintronic sensors and memory , 2003, Proc. IEEE.

[37]  M J Donahue,et al.  OOMMF User's Guide, Version 1.0 , 1999 .

[38]  T. Shidara,et al.  PERPENDICULAR MAGNETIC ANISOTROPY CAUSED BY INTERFACIAL HYBRIDIZATION VIA ENHANCED ORBITAL MOMENT IN CO/PT MULTILAYERS : MAGNETIC CIRCULAR X-RAY DICHR OISM STUDY , 1998 .

[39]  Mark H. Kryder,et al.  Spin valves exchange biased by Co/Ru/Co synthetic antiferromagnets , 1998 .

[40]  Engel,et al.  Interface magnetic anisotropy in epitaxial superlattices. , 1991, Physical review letters.

[41]  W. B. Zeper,et al.  Effect of energetic bombardment on the magnetic coercivity of sputtered Pt/Co thin‐film multilayers , 1990 .

[42]  G. Shirane,et al.  MAGNETIC STRUCTURE OF Mn$sub 4$N-TYPE COMPOUNDS , 1962 .

[43]  T. Moriya Anisotropic Superexchange Interaction and Weak Ferromagnetism , 1960 .

[44]  G. Shirane,et al.  Magnetic Structure of Mn 4 N , 1960 .

[45]  I. Dzyaloshinsky A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics , 1958 .