Quench dynamics and parity blocking in Majorana wires

We theoretically explore quench dynamics in a finite-sized topological fermionic p-wave superconducting wire with the goal of demonstrating that topological order can have marked effects on such non-equilibrium dynamics. In the case studied here, topological order is reflected in the presence of two (nearly) isolated Majorana fermionic end bound modes together forming an electronic state that can be occupied or not, leading to two (nearly) degenerate ground states characterized by fermion parity. Our study begins with a characterization of the static properties of the finite-sized wire, including the behavior of the Majorana end modes and the form of the tunnel coupling between them; a transfer matrix approach to analytically determine the locations of the zero energy contours where this coupling vanishes; and a Pfaffian approach to map the ground state parity in the associated phase diagram. We next study the quench dynamics resulting from initializing the system in a topological ground state and then dynamically tuning one of the parameters of the Hamiltonian. For this, we develop a dynamic quantum many-body technique that invokes a Wick's theorem for Majorana fermions, vastly reducing the numerical effort given the exponentially large Hilbert space. We investigate the salient and detailed features of two dynamic quantities - the overlap between the time-evolved state and the instantaneous ground state (adiabatic fidelity) and the residual energy. When the parity of the instantaneous ground state flips successively with time, we find that the time-evolved state can dramatically switch back and forth between this state and an excited state even when the quenching is very slow, a phenomenon that we term "parity blocking". This parity blocking becomes prominently manifest as non-analytic jumps as a function of time in both dynamic quantities.

[1]  Maciej Lewenstein,et al.  An optical-lattice-based quantum simulator for relativistic field theories and topological insulators , 2011, 1105.0932.

[2]  K. Sengupta,et al.  Exact results for quench dynamics and defect production in a two-dimensional model. , 2007, Physical review letters.

[3]  A. Dutta,et al.  Quenching through Dirac and semi-Dirac points in optical lattices: Kibble-Zurek scaling for anisotropic quantum critical systems , 2009, 0910.3896.

[4]  S. Gubser,et al.  Kibble-Zurek problem: Universality and the scaling limit , 2012, 1202.5277.

[5]  M. Leijnse,et al.  Introduction to topological superconductivity and Majorana fermions , 2012, 1206.1736.

[6]  Pasquale Sodano,et al.  Even–odd parity effects in Majorana junctions , 2013, 1301.6882.

[7]  T W B Kibble,et al.  Topology of cosmic domains and strings , 1976 .

[8]  Jacek Dziarmaga,et al.  Dynamics of a quantum phase transition and relaxation to a steady state , 2009, 0912.4034.

[9]  M. Rigol,et al.  Quenches in a quasidisordered integrable lattice system: Dynamics and statistical description of observables after relaxation , 2012, 1206.3570.

[10]  C. L. Yu,et al.  Observation of Majorana Fermions in a Nb-InSb Nanowire-Nb Hybrid Quantum Device , 2012, 1204.4130.

[11]  E. Demler,et al.  Bound states at impurities as a probe of topological superconductivity in nanowires , 2013 .

[12]  G. Santoro,et al.  Adiabatic dynamics in open quantum critical many-body systems. , 2008, Physical review letters.

[13]  Fractional ac Josephson effect in p- and d-wave superconductors , 2002, cond-mat/0210148.

[14]  Jacek Dziarmaga,et al.  Dynamics of a quantum phase transition: exact solution of the quantum Ising model. , 2005, Physical review letters.

[15]  S. Das Sarma,et al.  Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures. , 2010, Physical review letters.

[16]  M. Rigol Quantum quenches in the thermodynamic limit. , 2014, Physical review letters.

[17]  A. Polkovnikov,et al.  Quench dynamics near a quantum critical point , 2009, 0909.5181.

[18]  Guang-Yao Huang,et al.  Anomalous zero-bias conductance peak in a Nb-InSb nanowire-Nb hybrid device. , 2012, Nano letters.

[19]  G. Santoro,et al.  Adiabatic dynamics of a quantum critical system coupled to an environment: Scaling and kinetic equation approaches , 2008, 0812.3685.

[20]  J. Vala,et al.  Topological degeneracy and vortex manipulation in Kitaev's honeycomb model. , 2008, Physical review letters.

[21]  M. Leijnse,et al.  Parity qubits and poor man's Majorana bound states in double quantum dots , 2012, 1207.4299.

[22]  K. Sengupta,et al.  Defect production in nonlinear quench across a quantum critical point. , 2008, Physical review letters.

[23]  X. Qi,et al.  Topological insulators and superconductors , 2010, 1008.2026.

[24]  Charles M. Lieber,et al.  Spin-resolved Andreev levels and parity crossings in hybrid superconductor-semiconductor nanostructures. , 2013, Nature nanotechnology.

[25]  J. E. Moore,et al.  Universal Nonequilibrium Signatures of Majorana Zero Modes in Quench Dynamics , 2014, 1405.5865.

[26]  L. Amico,et al.  Topology-induced anomalous defect production by crossing a quantum critical point. , 2008, Physical review letters.

[27]  P. Sacramento Fate of Majorana fermions and Chern numbers after a quantum quench. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  C. Kane,et al.  Josephson current and noise at a superconductor/quantum-spin-Hall-insulator/superconductor junction , 2008, 0804.4469.

[29]  D. Sen,et al.  Defect production due to quenching through a multicritical point , 2008, 0807.3606.

[30]  Jason Alicea,et al.  New directions in the pursuit of Majorana fermions in solid state systems , 2012, Reports on progress in physics. Physical Society.

[31]  V. Mukherjee,et al.  Adiabatic multicritical quantum quenches: Continuously varying exponents depending on the direction of quenching , 2010, 1006.3343.

[32]  Quenching across quantum critical points: Role of topological patterns , 2010, 1003.0058.

[33]  Entropy and correlation functions of a driven quantum spin chain (15 pages) , 2005, cond-mat/0512689.

[34]  D. Sen,et al.  Majorana modes and transport across junctions of superconductors and normal metals , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[35]  C. Beenakker,et al.  Wigner-Poisson statistics of topological transitions in a Josephson junction. , 2013, Physical review letters.

[36]  Eytan Barouch,et al.  Statistical Mechanics of the X Y Model. II. Spin-Correlation Functions , 1971 .

[37]  T. Giamarchi,et al.  Thermalization and dissipation in out-of-equilibrium quantum systems: A perturbative renormalization group approach , 2011, 1110.3671.

[38]  J. Vala,et al.  Description of Kitaev’s honeycomb model with toric-code stabilizers , 2009, 0903.5211.

[39]  S. Vishveshwara,et al.  Topological phases, Majorana modes and quench dynamics in a spin ladder system , 2011, 1102.0824.

[40]  Robert König,et al.  Disorder-Assisted Error Correction in Majorana Chains , 2011, 1108.3845.

[41]  The simplest quantum model supporting the Kibble-Zurek mechanism of topological defect production: Landau-Zener transitions from a new perspective. , 2004, Physical review letters.

[42]  Bikas K. Chakrabarti,et al.  Transverse Field Spin Models: From Statistical Physics to Quantum Information , 2010, 1012.0653.

[43]  W. Zurek,et al.  Adiabatic-impulse approximation for avoided level crossings: From phase-transition dynamics to Landau-Zener evolutions and back again , 2005, cond-mat/0511709.

[44]  R. Moessner,et al.  Tunable nonequilibrium dynamics of field quenches in spin ice , 2013, Proceedings of the National Academy of Sciences.

[45]  S. Girvin,et al.  The Quantum Hall Effect , 1987 .

[46]  Y. Oreg,et al.  Zero-bias peaks and splitting in an Al–InAs nanowire topological superconductor as a signature of Majorana fermions , 2012, Nature Physics.

[47]  Universal adiabatic dynamics in the vicinity of a quantum critical point , 2003, cond-mat/0312144.

[48]  S. Vishveshwara,et al.  Topological blocking in quantum quench dynamics , 2013, 1312.6387.

[49]  M. Franz Majorana's wires. , 2013, Nature nanotechnology.

[50]  D. Sen,et al.  Quenching along a gapless line: A different exponent for defect density , 2008, 0805.3328.

[51]  A. Polkovnikov,et al.  Breakdown of the adiabatic limit in low-dimensional gapless systems , 2007, 0803.3967.

[52]  A. Green,et al.  Dynamics after a sweep through a quantum critical point. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  Parsa Bonderson,et al.  Topological quantum buses: coherent quantum information transfer between topological and conventional qubits. , 2011, Physical review letters.

[54]  W. H. Zurek,et al.  Cosmological experiments in superfluid helium? , 1985, Nature.

[55]  J. Eisert,et al.  Probing local relaxation of cold atoms in optical superlattices , 2008, 0808.3779.

[56]  Alessandro Silva,et al.  Colloquium: Nonequilibrium dynamics of closed interacting quantum systems , 2010, 1007.5331.

[57]  L. F. Santos,et al.  Single-particle and many-body analyses of a quasiperiodic integrable system after a quench , 2013, 1304.2778.

[58]  S. Sondhi,et al.  Kibble–Zurek scaling and string-net coarsening in topologically ordered systems , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[59]  A. Kitaev Unpaired Majorana fermions in quantum wires , 2000, cond-mat/0010440.

[60]  Rosario Fazio,et al.  Quantum quenches, thermalization, and many-body localization , 2010, 1006.1634.

[61]  C. Zener Non-Adiabatic Crossing of Energy Levels , 1932 .

[62]  E. Bakkers,et al.  Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices , 2012, Science.

[63]  Helen Au-Yang,et al.  New Results for the Correlation Functions of the Ising Model and the Transverse Ising Chain , 2009, 0901.1931.

[64]  E. Lieb,et al.  Two Soluble Models of an Antiferromagnetic Chain , 1961 .

[65]  K. Sengupta,et al.  Quench dynamics and defect production in the Kitaev and extended Kitaev models , 2008, 0802.3986.

[66]  Y. Oreg,et al.  Signatures of topological phase transitions in mesoscopic superconducting rings , 2012, 1210.3237.

[67]  K. T. Law,et al.  Robustness of Majorana fermion induced fractional Josephson effect in multichannel superconducting wires , 2011, 1103.5013.

[68]  Ettore Majorana Atomi orientati in campo magnetico variabile , 1932 .

[69]  E. Yuzbashyan,et al.  Quench-induced Floquet topological p-wave superfluids. , 2013, Physical review letters.

[70]  L. Viola,et al.  Dynamical non-ergodic scaling in continuous finite-order quantum phase transitions , 2008, 0809.2831.

[71]  Alexei Kitaev,et al.  Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.

[72]  G. Refael,et al.  Helical liquids and Majorana bound states in quantum wires. , 2010, Physical review letters.

[73]  A. Polkovnikov,et al.  Adiabatic nonlinear probes of one-dimensional bose gases. , 2008, Physical review letters.

[74]  Xiuling Li,et al.  Anomalous modulation of a zero-bias peak in a hybrid nanowire-superconductor device. , 2012, Physical review letters.

[75]  A. Polkovnikov,et al.  Optimal nonlinear passage through a quantum critical point. , 2008, Physical review letters.

[76]  D. Huse,et al.  Nonequilibrium dynamic critical scaling of the quantum Ising chain. , 2011, Physical review letters.

[77]  B. Bernevig Topological Insulators and Topological Superconductors , 2013 .

[78]  T. Kibble,et al.  Some Implications of a Cosmological Phase Transition , 1980 .

[79]  J. Cardy,et al.  Time dependence of correlation functions following a quantum quench. , 2006, Physical review letters.

[80]  L. Amico,et al.  Dynamical delocalization of Majorana edge states by sweeping across a quantum critical point , 2009, 0907.3134.

[81]  J. Cardy,et al.  Evolution of entanglement entropy in one-dimensional systems , 2005, cond-mat/0503393.

[82]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[83]  Dynamical formation and manipulation of Majorana fermions in driven quantum wires in contact with a superconductor. , 2012, Physical review letters.

[84]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[85]  C. Beenakker,et al.  The top-transmon: a hybrid superconducting qubit for parity-protected quantum computation , 2011, 1105.0315.

[86]  S. Vishveshwara,et al.  Majorana fermions in superconducting wires: Effects of long-range hopping, broken time-reversal symmetry, and potential landscapes , 2013, 1303.3304.

[87]  P. Zoller,et al.  Dynamics of a quantum phase transition. , 2005, Physical review letters.

[88]  M. Rigol,et al.  Quantum quenches in disordered systems: approach to thermal equilibrium without a typical relaxation time. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[89]  A. Patel,et al.  Quench dynamics of edge states in 2-D topological insulator ribbons , 2013, 1304.2248.

[90]  Wojciech Hubert Zurek,et al.  Cosmological experiments in condensed matter systems , 1996 .

[91]  K. Sengupta,et al.  Theory of defect production in nonlinear quench across a quantum critical point , 2008, 0808.1175.