Least Squares Shadowing Method for Sensitivity Analysis of Differential Equations

For a parameterized hyperbolic system $\frac{du}{dt}=f(u,s)$ the derivative of the ergodic average $\langle J \rangle = \lim_{T \to \infty}\frac{1}{T}\int_0^T J(u(t),s)$ to the parameter $s$ can be computed via the Least Squares Shadowing algorithm (LSS). We assume that the sytem is ergodic which means that $\langle J \rangle$ depends only on $s$ (not on the initial condition of the hyperbolic system). After discretizing this continuous system using a fixed timestep, the algorithm solves a constrained least squares problem and, from the solution to this problem, computes the desired derivative $\frac{d\langle J \rangle}{ds}$. The purpose of this paper is to prove that the value given by the LSS algorithm approaches the exact derivative when the discretization timestep goes to $0$ and the timespan used to formulate the least squares problem grows to infinity.

[1]  G. Eyink,et al.  Ruelle's linear response formula, ensemble adjoint schemes and Lévy flights , 2004 .

[2]  T. Klinger,et al.  Chaos control and taming of turbulence in plasma devices , 2001 .

[3]  Claude Froeschlé,et al.  Modelling: An Aim and a Tool for the Study of the Chaotic Behaviour of Asteroidal and Cometary Orbits , 1991 .

[4]  M. J. Rimlinger,et al.  Constrained Multipoint Aerodynamic Shape Optimization Using an Adjoint Formulation and Parallel Computers , 1997 .

[5]  S. Kuznetsov Hyperbolic Chaos: A Physicist’s View , 2012 .

[6]  Structural stability of C1 flows , 1975 .

[7]  C. Robinson Dynamical Systems: Stability, Symbolic Dynamics, and Chaos , 1994 .

[8]  M. Allen,et al.  Sensitivity analysis of the climate of a chaotic system , 2000 .

[9]  Christian Bonatti,et al.  Dynamics Beyond Uniform Hyperbolicity: A Global Geometric and Probabilistic Perspective , 2004 .

[10]  C. Stuart Daw,et al.  Chaos in thermal pulse combustion. , 1995, Chaos.

[11]  Armistead G Russell,et al.  Nonlinear response of ozone to emissions: source apportionment and sensitivity analysis. , 2005, Environmental science & technology.

[12]  Peter H. Haynes,et al.  Climate Sensitivity via a Nonparametric Fluctuation–Dissipation Theorem , 2011 .

[13]  R. Buizza Chaos and weather prediction January 2000 , 2002 .

[14]  D. Ruelle Differentiation of SRB States , 1997 .

[15]  Qiqi Wang,et al.  Towards scalable parallel-in-time turbulent flow simulations , 2012, 1211.2437.

[16]  Qiqi Wang,et al.  Convergence of the Least Squares Shadowing Method for Computing Derivative of Ergodic Averages , 2013, SIAM J. Numer. Anal..

[17]  Chin-Jang Chang,et al.  Analysis of chaotic instabilities in boiling systems , 1997 .

[18]  Qiqi Wang,et al.  Uncertainty quantification for unsteady fluid flow using adjoint-based approaches , 2009 .

[19]  David Ruelle,et al.  MEASURES DESCRIBING A TURBULENT FLOW , 1980 .

[20]  Andrew J. Majda,et al.  Blended response algorithms for linear fluctuation-dissipation for complex nonlinear dynamical systems , 2007 .

[21]  Raymond M. Hicks,et al.  Wing design by numerical optimization , 1977 .

[22]  Qiqi Wang,et al.  Least Squares Shadowing sensitivity analysis of chaotic limit cycle oscillations , 2012, J. Comput. Phys..

[23]  Giovanni Gallavotti,et al.  Entropy, thermostats, and chaotic hypothesis. , 2006, Chaos.