Novel Models and Algorithms for Integrated Production Planning and Scheduling

This thesis is concerned with production planning and scheduling in make-toorder manufacturing system. It defines a novel formulation of the aggregate production planning problem, and an aggregation procedure to construct this representation from detailed production data. The objective of aggregation is to receive plans that can be refined into feasible detailed schedules. For detailed production scheduling, new techniques – so-called consistency preserving transformations – are proposed to boost the efficiency of current constraint-based scheduling algorithms. The transformations exploit structural properties commonly present in industrial problem instances. Finally, a pilot integrated production planner and scheduler software is introduced. It served as the test bed of the proposed models and algorithms during experiments run on real-life problem instances.

[1]  Robert C. Leachman,et al.  An aggregate model of project-oriented production , 1989, IEEE Trans. Syst. Man Cybern..

[2]  T. Dobrowiecki,et al.  A TREE PARTITIONING ALGORITHM FOR ACTIVITY FORMATION IN AGGREGATE SCHEDULING , 2003 .

[3]  Narendra Jussien,et al.  Local search with constraint propagation and conflict-based heuristics , 2000, Artif. Intell..

[4]  Nancy Paterson The Library , 1912, Leonardo.

[5]  Winfried Hochstättler,et al.  Tree Partitioning Under Constraints - Clustering for Vehicle Routing Problems , 2000, Discret. Appl. Math..

[6]  Toby Walsh,et al.  Breaking Row and Column Symmetries in Matrix Models , 2002, CP.

[7]  Sverre Storøy,et al.  Aggregation and Disaggregation in Integer Programming Problems , 1990, Oper. Res..

[8]  Gabriel R. Bitran,et al.  Hierarchical Production Planning: A Two-Stage System , 1982, Oper. Res..

[9]  R. Kolisch,et al.  Heuristic algorithms for the resource-constrained project scheduling problem: classification and computational analysis , 1999 .

[10]  Philippe Baptiste,et al.  Constraint Propagation and Decomposition Techniques for Highly Disjunctive and Highly Cumulative Project Scheduling Problems , 1997, Constraints.

[11]  Stephen F. Smith,et al.  Profile-Based Algorithms to Solve Multiple Capacitated Metric Scheduling Problems , 1998, AIPS.

[12]  Ian P. Gent,et al.  Symmetry Breaking in Constraint Programming , 2000, ECAI.

[13]  Markus P. J. Fromherz,et al.  Constraint-based scheduling , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[14]  Botond Kádár,et al.  Towards the realisation of digital enterprises , 2003 .

[15]  Bart Selman,et al.  Backdoors To Typical Case Complexity , 2003, IJCAI.

[16]  J. Erschler,et al.  Raisonnement temporel sous contraintes de ressource et problèmes d'ordonnancement , 1991 .

[17]  Philippe Baptiste,et al.  A branch and bound to minimize the number of late jobs on a single machine with release time constraints , 2003, Eur. J. Oper. Res..

[18]  Yehoshua Perl,et al.  The Shifting Algorithm Technique for the Partitioning of Trees , 1995, Discret. Appl. Math..

[19]  Michela Milano,et al.  Global Cut Framework for Removing Symmetries , 2001, CP.

[20]  Meinolf Sellmann,et al.  Symmetry Breaking , 2001, CP.

[21]  Sukhamay Kundu,et al.  A Linear Tree Partitioning Algorithm , 1977, SIAM J. Comput..

[22]  P. Brucker,et al.  Tabu Search Algorithms and Lower Bounds for the Resource-Constrained Project Scheduling Problem , 1999 .

[23]  Eric Pinson,et al.  A Practical Use of Jackson''s Preemptive Schedule for Solving the Job-Shop Problem. Annals of Opera , 1991 .

[24]  Robert M. Haralick,et al.  Increasing Tree Search Efficiency for Constraint Satisfaction Problems , 1979, Artif. Intell..

[25]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[26]  Tamás Kis,et al.  A branch-and-cut algorithm for scheduling of projects with variable-intensity activities , 2005, Math. Program..

[27]  József Váncza,et al.  Constraint-based process planning in sheet metal bending , 2002 .

[28]  J. Erschler,et al.  Consistency of the Disaggregation Process in Hierarchical Planning , 1986, Oper. Res..

[29]  Pierre Lopez,et al.  On Not-First/Not-Last conditions in disjunctive scheduling , 2000, Eur. J. Oper. Res..

[30]  Andrea Lodi,et al.  Local Search and Constraint Programming , 2003, Handbook of Metaheuristics.

[31]  Warwick Harvey,et al.  Groups and Constraints: Symmetry Breaking during Search , 2002, CP.

[32]  Philippe Laborie,et al.  Algorithms for propagating resource constraints in AI planning and scheduling: Existing approaches and new results , 2003, Artif. Intell..

[33]  Edward W. Davis,et al.  A Comparison of Heuristic and Optimum Solutions in Resource-Constrained Project Scheduling , 1975 .

[34]  Rolf H. Möhring,et al.  Resource-constrained project scheduling: Notation, classification, models, and methods , 1999, Eur. J. Oper. Res..

[35]  Steve Linton,et al.  Generic SBDD Using Computational Group Theory , 2003, CP.

[36]  Péter Egri,et al.  Project-oriented approach to production planning and scheduling in make-to-order manufacturing , 2005 .

[37]  József Váncza,et al.  Integrált termeléstervezés és ütemezés megrendelésre történő gyártásban , 2005 .

[38]  Toby Walsh,et al.  Backbones in Optimization and Approximation , 2001, IJCAI.

[39]  Tamás Kis,et al.  Aggregation - the key to integrating production planning and scheduling , 2004 .

[40]  Rolf Backofen,et al.  Excluding Symmetries in Constraint-Based Search , 1999, CP.

[41]  A. Márkus,et al.  Towards the Realization of Digital Enterprises , 2004 .

[42]  Robert C. Leachman,et al.  A revised critical path method for networks including both overlap relationships and variable-duration activities , 1993 .

[43]  Tamás Kis,et al.  Project scheduling approach to production planning , 2003 .

[44]  Marguerite FRANK,et al.  The Braess paradox , 1981, Math. Program..

[45]  J. Christopher Beck,et al.  Five Pitfalls of Empirical Scheduling Research , 1997, CP.

[46]  Jacek Blazewicz,et al.  The job shop scheduling problem: Conventional and new solution techniques , 1996 .

[47]  Herbert Meyr,et al.  Planning Hierarchy, Modeling and Advanced Planning Systems , 2003, Supply Chain Management.

[48]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[49]  Stephen F. Smith,et al.  ISIS : a constraint-directed reasoning approach to job shop scheduling, a system summary , 1983 .

[51]  Jatinder N. D. Gupta,et al.  A review of scheduling research involving setup considerations , 1999 .

[52]  Mark Wallace,et al.  Practical applications of constraint programming , 2004, Constraints.

[53]  András Kovács,et al.  Constraint feedback in solving incomplete models: a case study in sheet metal bending , 2002 .

[54]  Rainer Leisten,et al.  An LP-aggregation view on aggregationin multi-level production planning , 1998, Ann. Oper. Res..

[55]  Olivier Lhomme,et al.  Consistency Techniques for Numeric CSPs , 1993, IJCAI.

[56]  Botond Kádár,et al.  Discrete event simulation for supporting production planning and scheduling decisions in digital factories , 2004 .

[57]  James R. Evans,et al.  Aggregation and Disaggregation Techniques and Methodology in Optimization , 1991, Oper. Res..

[58]  Philippe Baptiste,et al.  Satisfiability tests and time‐bound adjustmentsfor cumulative scheduling problems , 1999, Ann. Oper. Res..

[59]  B. Simeone,et al.  Clustering on trees , 1997 .

[60]  Pilar Tormos,et al.  Tools for resource-constrained project scheduling and control: forward and backward slack analysis , 2001, J. Oper. Res. Soc..

[61]  Elias Willem Hans,et al.  Resource Loading by Branch-and-Price Techniques , 2001 .

[62]  J. Carlier,et al.  Adjustment of heads and tails for the job-shop problem , 1994 .

[63]  András Kovács,et al.  Hierarchical Knowledge-Based Process Planning in Manufacturing , 2001, PROLAMAT.

[64]  Tamás Kis,et al.  Partitioning of trees for minimizing height and cardinality , 2004, Inf. Process. Lett..

[65]  Philippe Baptiste,et al.  Constraint-Based Optimization and Approximation for Job-Shop Scheduling , 1995 .

[66]  C. C. Holt,et al.  A Linear Decision Rule for Production and Employment Scheduling , 1955 .

[67]  James M. Crawford,et al.  Symmetry-Breaking Predicates for Search Problems , 1996, KR.

[68]  Sven Axsäter,et al.  Technical Note - On the Feasibility of Aggregate Production Plans , 1986, Oper. Res..

[69]  Armin Wolf Better Propagation for Non-preemptive Single-Resource Constraint Problems , 2004, CSCLP.

[70]  András Kovács,et al.  Completable Partial Solutions in Constraint Programming and Constraint-Based Scheduling , 2004, CP.

[71]  Pascal Van Hentenryck The OPL optimization programming language , 1999 .

[72]  Matthew L. Ginsberg,et al.  Limited Discrepancy Search , 1995, IJCAI.

[73]  Reha Uzsoy,et al.  Machine Criticality Measures and Subproblem Solution Procedures in Shifting Bottleneck Methods: A Computational Study , 1996 .

[74]  Manuel Blum,et al.  Time Bounds for Selection , 1973, J. Comput. Syst. Sci..

[75]  J. Christopher Beck,et al.  Dynamic problem structure analysis as a basis for constraint-directed scheduling heuristics , 2000, Artif. Intell..

[76]  Amnon Meisels,et al.  Maintaining Dominance Consistency , 2003, CP.

[77]  Botond Kádár,et al.  Real-Life Scheduling Using Constraint Programming and Simulation , 2003 .

[78]  Thomas E. Morton,et al.  Heuristic scheduling systems : with applications to production systems and project management , 1993 .

[79]  Erik Demeulemeester,et al.  Project scheduling : a research handbook , 2002 .

[80]  Joseph G. Monks,et al.  Operations Management: Theory and Problems , 1977 .

[81]  Erik Demeulemeester,et al.  A branch-and-bound procedure for the multiple resource-constrained project scheduling problem , 1992 .

[82]  Stéphane Dauzère-Pérès,et al.  An Integrated Approach in Production Planning and Scheduling , 1994 .

[83]  Krzysztof R. Apt,et al.  Principles of constraint programming , 2003 .

[84]  Steven David Prestwich,et al.  Combining the Scalability of Local Search with the Pruning Techniques of Systematic Search , 2002, Ann. Oper. Res..

[85]  Michel Gendreau,et al.  A View of Local Search in Constraint Programming , 1996, CP.

[86]  Michael J. Todd,et al.  Mathematical programming , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[87]  Pierre Lopez,et al.  Overview and Possible Extensions of Shaving Techniques for Job-Shop Problems ! , 2000 .

[88]  D. S. Johnson,et al.  On Knapsacks, Partitions, and a New Dynamic Programming Technique for Trees , 1983, Math. Oper. Res..

[89]  Reha Uzsoy,et al.  Measures of subproblem criticality in decomposition algorithms for shop scheduling , 2003 .

[90]  Sooyoung Kim,et al.  Resource-Constrained Scheduling of Projects with Variable-Intensity Activities , 1990 .

[91]  András Kovács,et al.  A Novel Approach to Aggregate Scheduling in Project-Oriented Manufacturing , 2003 .

[92]  Botond Kádár,et al.  Production management: taking up the challenge of integration , 2002 .

[93]  Eugeniusz Toczyowski,et al.  Restrictive aggregation of items in multi-stage production systems , 1991 .