SOSPD Controllers Tuning by Means of an Evolutionary Algorithm

The Proportional Integral Derivative (PID) controller is the most widely used industrial device to monitoring and controlling processes. There are numerous methods for estimating the controller parameters, in general, resolving particular cases. Current trends in parameter estimation minimize an integral performance criterion. Therefore, the calculation of the controller parameters is proposed as an optimization problem. Although there are alternatives to the traditional rules of tuning, there is not yet a study showing that the use of heuristic algorithms it is indeed better than using the classic methods of optimal tuning. In this paper, the evolutionary algorithm MAGO is used as a tool to optimize the controller parameters. The procedure is applied to a range of standard plants modeled as a Second Order System plus Time Delay. Better results than traditional methods of optimal tuning, regardless of the operating mode of the controller, are yielded.

[1]  Hui-Ming Wee,et al.  Soccer Game Optimization: An Innovative Integration of Evolutionary Algorithm and Swarm Intelligence Algorithm , 2015 .

[2]  Intan Zaurah Mat Darus,et al.  PID controller tuning using evolutionary algorithms , 2012 .

[3]  Alberto Herreros,et al.  Design of PID-type controllers using multiobjective genetic algorithms. , 2002, ISA transactions.

[4]  Aliyu Olayemi Abdullateef Qualitative Response Regression Modeling , 2015 .

[5]  Mao Jianlin,et al.  Evolutionary algorithms based parameters tuning of PID controller , 2011, 2011 Chinese Control and Decision Conference (CCDC).

[6]  W. Chang,et al.  Optimum setting of PID controllers based on using evolutionary programming algorithm , 2004 .

[7]  S. Baskar,et al.  Evolutionary algorithms based design of multivariable PID controller , 2009, Expert Syst. Appl..

[8]  S. Daley,et al.  Optimal-Tuning PID Control for Industrial Systems , 2000 .

[9]  J. A. Hernández,et al.  A multi dynamics algorithm for global optimization , 2010, Math. Comput. Model..

[10]  Karl Johan Åström,et al.  PID Controllers: Theory, Design, and Tuning , 1995 .

[11]  William J. Gibbs,et al.  Contemporary Research Methods and Data Analytics in the News Industry , 2015 .

[12]  Douglas C. Montgomery,et al.  Introduction to Statistical Quality Control , 1986 .

[13]  L. Darrell Whitley,et al.  An overview of evolutionary algorithms: practical issues and common pitfalls , 2001, Inf. Softw. Technol..

[14]  Saeed Tavakoli,et al.  Multi-objective optimization approach to the PI tuning problem , 2007, 2007 IEEE Congress on Evolutionary Computation.

[15]  Peter J. Fleming,et al.  Evolutionary algorithms in control systems engineering: a survey , 2002 .

[16]  J. A. Lozano,et al.  Towards a New Evolutionary Computation: Advances on Estimation of Distribution Algorithms (Studies in Fuzziness and Soft Computing) , 2006 .

[17]  Su Whan Sung,et al.  Automatic Tuning of PID Controller Using Second-Order Plus Time Delay Model , 1996 .

[18]  Xinjie Yu,et al.  Introduction to evolutionary algorithms , 2010, The 40th International Conference on Computers & Indutrial Engineering.

[19]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.

[20]  Pedro Larrañaga,et al.  Towards a New Evolutionary Computation - Advances in the Estimation of Distribution Algorithms , 2006, Towards a New Evolutionary Computation.

[21]  Jamaluddin Hishamuddin,et al.  Implementation of PID controller tuning using differential evolution and genetic algorithms , 2012 .

[22]  Filipe Quinaz,et al.  Soft Methods for Automatic Drug Infusion in Medical Care Environment , 2015 .

[23]  Mario J. Pérez-Jiménez,et al.  Linear Time Solution to Prime Factorization by Tissue P Systems with Cell Division , 2011, Int. J. Nat. Comput. Res..

[24]  Stéphane Ganassali,et al.  Research Intentions are nothing without Technology: Mixed-Method Web Surveys and the Coberen Wall of Pictures Protocol , 2013 .

[25]  Anna Helena Reali Costa,et al.  Mapping with Monocular Vision in Two Dimensions , 2010, Int. J. Nat. Comput. Res..

[26]  Yeesock Kim,et al.  Comparative Study on Multi-Objective Genetic Algorithms for Seismic Response Controls of Structures , 2013 .

[27]  Hassan Bevrani,et al.  An On-Line PSO-Based Fuzzy Logic Tuning Approach: Microgrid Frequency Control Case Study , 2014 .

[28]  Aidan O'Dwyer,et al.  Handbook of PI and PID controller tuning rules , 2003 .

[29]  Tazid Ali,et al.  Evidence-Based Uncertainty Modeling , 2015 .

[30]  Vishal Bhatnagar,et al.  Critical Parameters for Fuzzy Data Mining , 2015 .

[31]  Roy Rada,et al.  Knowledge in Memetic Algorithms for Stock Classification , 2014, Int. J. Artif. Life Res..

[32]  Jesús-Antonio Hernández-Riveros,et al.  Sensitivity Analysis of an Autonomous Evolutionary Algorithm , 2012, IBERAMIA.

[33]  Zbigniew Skolicki,et al.  The influence of migration sizes and intervals on island models , 2005, GECCO '05.

[34]  Victor C. X. Wang Handbook of Research on Scholarly Publishing and Research Methods , 2014 .

[35]  Taghreed Justinia Software-Assisted Transcribing for Qualitative Interviews: Practical Guidelines , 2015 .

[36]  Thomas J. McAvoy,et al.  Linear Feedback vs. Time Optima Control. II. The Regulator Problem , 1976 .

[37]  Liu Fan,et al.  Design for auto-tuning PID controller based on genetic algorithms , 2009, 2009 4th IEEE Conference on Industrial Electronics and Applications.

[38]  Gordon J. Murray The Disruptive Impact of Emerging Technology , 2015 .

[39]  A. Ghorbani,et al.  Market Research Methodologies: Multi-Method and Qualitative Approaches , 2014 .