Tensor tomography on surfaces

We show that on simple surfaces the geodesic ray transform acting on solenoidal symmetric tensor fields of arbitrary order is injective. This solves a long standing inverse problem in the two-dimensional case.

[1]  Plamen Stefanov,et al.  Linearizing non-linear inverse problems and an application to inverse backscattering , 2008, 0809.0270.

[2]  G. Uhlmann,et al.  Stability estimates for the X-ray transform of tensor fields and boundary rigidity , 2004 .

[3]  V. Romanov,et al.  On uniqueness of determination of a form of first degree by its integrals along geodesics , 1997 .

[4]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[5]  G. Uhlmann,et al.  Regularity of ghosts in tensor tomography , 2005 .

[6]  C. Kenig,et al.  Limiting Carleman weights and anisotropic inverse problems , 2008, 0803.3508.

[7]  V. Sharafutdinov Integral geometry of a tensor field on a surface of revolution , 1997 .

[8]  M. Salo,et al.  The attenuated ray transform on simple surfaces , 2010, 1004.2323.

[9]  Joe W. Harris,et al.  Principles of Algebraic Geometry: Griffiths/Principles , 1994 .

[10]  J. Thorpe,et al.  Lecture Notes on Elementary Topology and Geometry. , 1967 .

[11]  L. Hörmander,et al.  The Analysis of Linear Partial Differential Operators IV , 1985 .

[12]  V. Guillemin,et al.  Some inverse spectral results for negatively curved 2-manifolds , 1980 .

[13]  S. Ivanov Volume comparison via boundary distances , 2010, 1004.2505.

[14]  Joe W. Harris,et al.  Principles of Algebraic Geometry , 1978 .

[15]  G. Uhlmann,et al.  On characterization of the range and inversion formulas for the geodesic X-ray transform , 2004 .

[16]  G. Uhlmann,et al.  Two dimensional compact simple Riemannian manifolds are boundary distance rigid , 2003, math/0305280.

[17]  N. S. Dairbekov Integral geometry problem for nontrapping manifolds , 2006 .

[18]  G. Uhlmann,et al.  Boundary and lens rigidity, tensor tomography and analytic microlocal analysis , 2008 .

[19]  V. Sharafutdinov Integral Geometry of Tensor Fields , 1994 .

[20]  V. Sharafutdinov An Integral Geometry Problem in a Nonconvex Domain , 2002 .

[21]  V. Sharafutdinov Variations of Dirichlet-to-Neumann map and deformation boundary rigidity of simple 2-manifolds , 2007 .

[22]  V. Sharafutdinov,et al.  Integral geometry of tensor fields on a manifold of negative curvature , 1988 .

[23]  René Michel,et al.  Sur la rigidité imposée par la longueur des géodésiques , 1981 .

[24]  G. Thorbergsson,et al.  Closed geodesics on non-compact Riemannian manifolds , 1978 .

[25]  M. Salo,et al.  The attenuated ray transform for connections and Higgs fields , 2011, 1108.1118.

[26]  G. Paternain Transparent connections over negatively curved surfaces , 2008, 0809.4360.