Ink-jet printed porous composite LiFePO4 electrode from aqueous suspension for microbatteries

This work demonstrates ink-jet printed LiFePO4-based composite porous electrodes for microbattery application. As binder and dispersant, we found that aqueous inks with more suitable rheological properties with respect to ink-jet printing are prepared with the low molecular weight poly-acrylic-co-maleic acid copolymer, rather than with the carboxymethyl cellulose standard binder of the lithium-ion technology. The ink-jet printed thin and porous electrode shows very high rate charge/discharge behavior, both in LiPF6/ethylene carbonate-dimethyl carbonate (LP30) and lithium bis(trifluoromethane)sulfonylimide salt (Li-TFSI) in N-methyl-N-propylpyrrolidinium bis(trifluoromethane)suflonylimide ionic liquid (PYR13-TFSI) electrolytes, as well as good cyclability.

[1]  P. Taberna,et al.  Electrochemical Kinetic Study of LiFePO4 Using Cavity Microelectrode , 2011 .

[2]  Chia-Chen Li,et al.  Improvements of dispersion homogeneity and cell performance of aqueous-processed LiCoO2 cathodes by using dispersant of PAA-NH4 , 2006 .

[3]  H. Munakata,et al.  Evaluation of real performance of LiFePO4 by using single particle technique , 2012 .

[4]  S. Hyun,et al.  Characterization of a LiCoO2 thick film by screen-printing for a lithium ion micro-battery , 2006 .

[5]  J. D. Robertson,et al.  Electrical properties of amorphous lithium electrolyte thin films , 1992 .

[6]  Dominique Guyomard,et al.  Toward fast and cost-effective ink-jet printing of solid electrolyte for lithium microbatteries , 2015 .

[7]  R. Huggins,et al.  Solid state ionics 2 , 1991 .

[8]  Ian M. Hutchings,et al.  Direct Writing Technology Advances and Developments , 2008 .

[9]  Hyeong-Jin Kim,et al.  Electrochemical properties of LiCoO2 thick-film cathodes prepared by screen-printing technique , 2006 .

[10]  Zhiyu Jiang,et al.  Preparing ultra-thin nano-MnO2 electrodes using computer jet-printing method , 2003 .

[11]  Young-Min Choi,et al.  Effect of Carboxymethyl Cellulose on Aqueous Processing of LiFePO4 Cathodes and Their Electrochemical Performance , 2008 .

[12]  V. Subramanian,et al.  Systematic design of jettable nanoparticle-based inkjet inks: rheology, acoustics, and jettability. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[13]  P. Novák,et al.  Influence of surfactants and viscosity in the preparation process of battery electrodes containing nanoparticles. , 2009, Physical chemistry chemical physics : PCCP.

[14]  S. Hyun,et al.  Mechanical and electrical properties of a LiCoO2 cathode prepared by screen-printing for a lithium-ion micro-battery , 2007 .

[15]  T. Nam,et al.  Electrochemical properties of an as-deposited LiFePO4 thin film electrode prepared by aerosol deposition , 2013 .

[16]  D. Guyomard,et al.  Optimizing the surfactant for the aqueous processing of LiFePO4 composite electrodes , 2010 .

[17]  D. A. D. Corte Effects of surface chemical treatment on silicon negative electrodes for lithium-ion batteries: an in situ infrared spectroscopic study , 2013 .

[18]  L. Vékás,et al.  Adsorption of organic acids on magnetite nanoparticles, pH-dependent colloidal stability and salt tolerance , 2013 .

[19]  M. Winter,et al.  Low Cost, Environmentally Benign Binders for Lithium-Ion Batteries , 2010 .

[20]  D. Guyomard,et al.  Design of Aqueous Processed Thick LiFePO4 Composite Electrodes for High-Energy Lithium Battery , 2009 .

[21]  Philippe Moreau,et al.  Stability of LiFePO4 in water and consequence on the Li battery behaviour , 2008 .

[22]  P. Soudan,et al.  Solid‐State Electrode Materials with Ionic‐Liquid Properties for Energy Storage: the Lithium Solid‐State Ionic‐Liquid Concept. , 2011 .

[23]  Inderpreet Kaur,et al.  Comparative study of carbon nanotube dispersion using surfactants. , 2008, Journal of colloid and interface science.

[24]  J. Akedo,et al.  Preparation of Lithium Aluminum Titanium Phosphate Electrolytes Thick Films by Aerosol Deposition Method , 2011 .

[25]  S. Hyun,et al.  Performance evaluation of printed LiCoO2 cathodes with PVDF-HFP gel electrolyte for lithium ion microbatteries , 2008 .

[26]  K. Kanehori,et al.  Thin film solid electrolyte and its application to secondary lithium cell , 1983 .

[27]  J. Lewis,et al.  3D Printing of Interdigitated Li‐Ion Microbattery Architectures , 2013, Advanced materials.

[28]  D. Guyomard,et al.  Ionic vs Electronic Power Limitations and Analysis of the Fraction of Wired Grains in LiFePO4 Composite Electrodes , 2010 .

[29]  M. Cerbelaud,et al.  Manufacturing of industry-relevant silicon negative composite electrodes for lithium ion-cells , 2014 .

[30]  Ji-Won Choi,et al.  Issue and challenges facing rechargeable thin film lithium batteries , 2008 .

[31]  U. Paik,et al.  Dispersion properties of aqueous-based LiFePO4 pastes and their electrochemical performance for lithium batteries. , 2008, Ultramicroscopy.

[32]  G. Jellison,et al.  A Stable Thin‐Film Lithium Electrolyte: Lithium Phosphorus Oxynitride , 1997 .

[33]  Zhiyu Jiang,et al.  A novel and facile route of ink-jet printing to thin film SnO2 anode for rechargeable lithium ion batteries , 2006 .

[34]  Mao-Sung Wu,et al.  Effects of PAA-NH4 Addition on the Dispersion Property of Aqueous LiCoO2 Slurries and the Cell Performance of As-Prepared LiCoO2 Cathodes , 2005 .

[35]  Chia‐Chen Li,et al.  Effects of Surface-coated Carbon on the Chemical Selectivity for Water-Soluble Dispersants of LiFePO4 , 2011 .

[36]  P. Moreau,et al.  Is LiFePO4 Stable in Water? Toward Greener Li–Ion Batteries , 2008 .

[37]  Zhiyu Jiang,et al.  Electrochemical properties of LiCoO2 thin film electrode prepared by ink-jet printing technique , 2008 .

[38]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .