Motion of Solid Particles at Molten Metal–Liquid Slag Interface

[1]  Miao‐yong Zhu,et al.  Numerical Simulations of Inclusion Behavior in Gas-Stirred Ladles , 2013, Metallurgical and Materials Transactions B.

[2]  Brian G. Thomas,et al.  Flow Control with Local Electromagnetic Braking in Continuous Casting of Steel Slabs , 2008 .

[3]  Martin Valdez,et al.  The Ability of Slags to Absorb Solid Oxide Inclusions , 2006 .

[4]  R. Morales,et al.  Mathematical simulation of fluid dynamics during steel draining operations from a ladle , 2006 .

[5]  R. Eriksson,et al.  A Mathematical Model to Study Liquid Inclusion Behavior at the Steel-Slag Interface , 2005 .

[6]  R. Eriksson,et al.  Solid Inclusion Transfer at a Steel-Slag Interface with Focus on Tundish Conditions , 2005 .

[7]  K. Nakajima,et al.  Behavior of alumina-magnesia complex inclusions and magnesia inclusions on the surface of molten low-carbon steels , 2001 .

[8]  K. Nakajima,et al.  Behavior of nonmetallic inclusions in front of the solid-liquid interface in low-carbon steels , 2000 .

[9]  Rodolfo D. Morales,et al.  Numerical and Modeling Analysis of Fluid Flow and Heat Transfer of Liquid Steel in a Tundish with Different Flow Control Devices , 1999 .

[10]  G. Bergeles,et al.  Investigation of inclusion re-entrainment from the steel-slag interface , 1998 .

[11]  Pär Jönsson,et al.  Modeling of Fluid Flow Conditions around the Slag/Metal Interface in a Gas-stirred Ladle , 1996 .

[12]  Johnson,et al.  The Drop Volume Method for Interfacial Tension Determination: An Error Analysis. , 1996, Journal of colloid and interface science.

[13]  Akira Imamura,et al.  Effect of Length of Vertical Section on Inclusion Removal in Vertical Bending-type Continuous Casting Machine , 1994 .

[14]  R. G. Fisher,et al.  Prophylactic agents effecting lysis of dental plaque. Penetration of monomolecular films of stearyl alcohol and of N-octadecylacetamide by N-dodecylurea and related compounds , 1973 .