Classifying Patterns Using Fuzzy Cognitive Maps

This chapter is focused on the use of Fuzzy Cognitive Maps (FCMs) in classifying patterns, as alternative to the traditional classifiers such as neural networks or even as collaborators, in achieving better classification capabilities. By defining the classification procedure as the equilibrium point achieved by applying common inference laws, a FCM can simulate a typical classifier that maps a set of inputs to specific output values.

[1]  Chrysostomos D. Stylios,et al.  Active Hebbian learning algorithm to train fuzzy cognitive maps , 2004, Int. J. Approx. Reason..

[2]  Michalis Glykas,et al.  A fuzzy cognitive map approach to support urban design , 2004, Expert Syst. Appl..

[3]  Gonzalo Pajares,et al.  Fuzzy Cognitive Maps for stereovision matching , 2006, Pattern Recognit..

[4]  Dimitris E. Koulouriotis,et al.  Anamorphosis of fuzzy cognitive maps for operation in ambiguous and multi-stimulus real world environments , 2001, 10th IEEE International Conference on Fuzzy Systems. (Cat. No.01CH37297).

[5]  Michael N. Vrahatis,et al.  Fuzzy Cognitive Maps Learning Using Particle Swarm Optimization , 2005, Journal of Intelligent Information Systems.

[6]  Witold Pedrycz,et al.  Numerical and Linguistic Prediction of Time Series With the Use of Fuzzy Cognitive Maps , 2008, IEEE Transactions on Fuzzy Systems.

[7]  Panagiotis Chytas Performance measurement in a Greek financial institute using the balanced scorecard , 2006 .

[8]  Panagiotis Chytas,et al.  Intelligent impact assessment of HRM to the shareholder value , 2008, Expert Syst. Appl..

[9]  Dimitris E. Koulouriotis,et al.  Realism in fuzzy cognitive maps: incorporating synergies and conditional effects , 2001, 10th IEEE International Conference on Fuzzy Systems. (Cat. No.01CH37297).

[10]  Dimitris E. Koulouriotis,et al.  Investment analysis & decision making in markets using adaptive fuzzy causal relationships , 2004, Oper. Res..

[11]  Bart Kosko,et al.  Fuzzy Cognitive Maps , 1986, Int. J. Man Mach. Stud..

[12]  Jose L. Salmeron,et al.  Benchmarking main activation functions in fuzzy cognitive maps , 2009, Expert Syst. Appl..

[13]  D. E. Koulouriotis,et al.  Learning fuzzy cognitive maps using evolution strategies: a novel schema for modeling and simulating high-level behavior , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[14]  M. Quaddus,et al.  Group Decision Support Using Fuzzy Cognitive Maps for Causal Reasoning , 2004 .

[15]  Michalis Glykas,et al.  Intelligent modeling of e-business maturity , 2007, Expert Syst. Appl..

[16]  Michalis Glykas,et al.  Fuzzy cognitive maps in business analysis and performance-driven change , 2004, IEEE Transactions on Engineering Management.

[17]  Dimitris E. Koulouriotis,et al.  Development of dynamic cognitive networks as complex systems approximators: validation in financial time series , 2005, Appl. Soft Comput..

[18]  Chrysostomos D. Stylios,et al.  Fuzzy Cognitive Map Learning Based on Nonlinear Hebbian Rule , 2003, Australian Conference on Artificial Intelligence.

[19]  Manolis A. Christodoulou,et al.  Adaptive Estimation of Fuzzy Cognitive Maps With Proven Stability and Parameter Convergence , 2009, IEEE Transactions on Fuzzy Systems.

[20]  Yiannis S. Boutalis,et al.  Fuzzy Cognitive Maps for Pattern Recognition Applications , 2008, Int. J. Pattern Recognit. Artif. Intell..

[21]  Dimitris E. Koulouriotis,et al.  Comparing simulated annealing and genetic algorithm in learning FCM , 2007, Appl. Math. Comput..

[22]  Witold Pedrycz,et al.  Genetic learning of fuzzy cognitive maps , 2005, Fuzzy Sets Syst..

[23]  Athanasios K. Tsadiras,et al.  Comparing the inference capabilities of binary, trivalent and sigmoid fuzzy cognitive maps , 2008, Inf. Sci..

[24]  D. Roviras,et al.  Comparison of neural network adaptive predistortion techniques for satellite down links , 2001, IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222).

[25]  D. E. Koulouriotis,et al.  A fuzzy cognitive map-based stock market model: synthesis, analysis and experimental results , 2001, 10th IEEE International Conference on Fuzzy Systems. (Cat. No.01CH37297).

[26]  Michalis Glykas,et al.  A soft knowledge modeling approach for geographically dispersed financial organizations , 2005, Soft Comput..

[27]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .