4. Estimating Two-Sided Logit Models

Logan (1996a) introduced a new micro-behavioral model of employment opportunity and choice, and a multivariate statistical method based on the micro-behavioral model. This article considers the connection between the behavioral model and the two-sided logit (TSL) statistical method in more detail than the original paper, discussing issues of parameter identification, model constraints, data reduction, and practical estimation. The article compares the EM gradient algorithm used in Logan (1996a) with an accelerated EM gradient algorithm and with a public-domain quasi-Newton algorithm. The latter two algorithms, now incorporated in a single program, greatly enhance the practicality of TSL modeling. Strategies for further development of TSL methods are also considered.

[1]  Michael Hechter,et al.  The Role of Values in Rational Choice Theory , 1994 .

[2]  J. Logan,et al.  Opportunity and Choice in Socially Structured Labor Markets , 1996, American Journal of Sociology.

[3]  V. Klema LINPACK user's guide , 1980 .

[4]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[5]  G. Maddala Limited-dependent and qualitative variables in econometrics: Introduction , 1983 .

[6]  New York Dover,et al.  ON THE CONVERGENCE PROPERTIES OF THE EM ALGORITHM , 1983 .

[7]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[8]  J. Horowitz RECONSIDERING THE MULTINOMIAL PROBIT MODEL , 1991 .

[9]  Philip E. Gill,et al.  Practical optimization , 1981 .

[10]  Moshe Ben-Akiva,et al.  CONSTRAINTS ON INDIVIDUAL TRAVEL BEHAVIOR IN A BRAZILIAN CITY , 1986 .

[11]  M. Ben-Akiva,et al.  Discrete choice analysis , 1989 .

[12]  John M. Abowd,et al.  Job Queues and the Union Status of Workers , 1982 .

[13]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[14]  M. Tanner Tools for statistical inference: methods for the exploration of posterior distributions and likeliho , 1994 .

[15]  P. Schmidt,et al.  Limited-Dependent and Qualitative Variables in Econometrics. , 1984 .

[16]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[17]  Alvin E. Roth,et al.  Two-Sided Matching: A Study in Game-Theoretic Modeling and Analysis , 1990 .

[18]  A. D. Hall,et al.  The PORT Mathematical Subroutine Library , 1978, TOMS.

[19]  J. Lindsey,et al.  Modelling Frequency and Count Data , 1995 .

[20]  Edward H. Ip,et al.  Stochastic EM: method and application , 1996 .

[21]  T. Amemiya QUALITATIVE RESPONSE MODELS: A SURVEY , 1981 .

[22]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[23]  Mark D. Uncles,et al.  Discrete Choice Analysis: Theory and Application to Travel Demand , 1987 .

[24]  Robert M. Hauser,et al.  A Structural Model of the Mobility Table , 1978 .

[25]  W. Press,et al.  Numerical Recipes in Fortran: The Art of Scientific Computing.@@@Numerical Recipes in C: The Art of Scientific Computing. , 1994 .

[26]  Stephen Pudney,et al.  Modelling Individual Choice: The Econometrics of Corners, Kinks, and Holes , 1991 .

[27]  A. Roth,et al.  Random paths to stability in two-sided matching , 1990 .

[28]  Moshe Ben-Akiva,et al.  Discrete Choice Analysis: Theory and Application to Travel Demand , 1985 .

[29]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[30]  John Allen Logan RATIONAL CHOICE AND THE TSL MODEL OF OCCUPATIONAL OPPORTUNITY , 1996 .

[31]  A. Cohen,et al.  Finite Mixture Distributions , 1982 .

[32]  R. Jennrich,et al.  Conjugate Gradient Acceleration of the EM Algorithm , 1993 .