Réécriture d'arbres de piles et traces de systèmes à compteurs. (Ground stack tree rewriting and traces of counter systems)

Dans cette these, nous nous attachons a etudier des classes de graphes infinis et leurs proprietes, Notamment celles de verification de modeles, d'accessibilite et de langages reconnus.Nous definissons une notion d'arbres de piles ainsi qu'une notion liee de reecriture suffixe, permettant d'etendre a la fois les automates a piles d'ordre superieur et la reecriture suffixe d'arbres de maniere minimale. Nous definissons egalement une notion de reconnaissabilite sur les ensembles d'operations a l'aide d'automates qui induit une notion de reconnaissabilite sur les ensembles d'arbres de piles et une notion de normalisation des ensembles reconnaissables d'operations analogues a celles existant sur les automates a pile d'ordre superieur. Nous montrons que les graphes definis par ces systemes de reecriture suffixe d'arbres de piles possedent une FO-theorie decidable, en montrant que ces graphes peuvent etre obtenu par une interpretation a ensembles finis depuis un graphe de la hierarchie a piles.Nous nous interessons egalement au probleme d'algebricite des langages de traces des systemes a compteurs et au probleme lie de la stratifiabilite d'un ensemble semi-lineaire. Nous montrons que dans le cas des polyedres d'entiers, le probleme de stratifiabilite est decidable et possede une complexite coNP-complete. Ce resultat nous permet ensuite de montrer que le probleme d'algebricite des traces de systemes a compteurs plats est decidable et coNP-complet. Nous donnons egalement une nouvelle preuve de la decidabilite des langages de traces des systemes d'addition de vecteurs, prealablement etudie par Schwer

[1]  Grégoire Sutre,et al.  On the Context-Freeness Problem for Vector Addition Systems , 2013, 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science.

[2]  David E. Muller,et al.  The Theory of Ends, Pushdown Automata, and Second-Order Logic , 1985, Theor. Comput. Sci..

[3]  Seymour Ginsburg,et al.  The mathematical theory of context free languages , 1966 .

[4]  Bruno Courcelle,et al.  The monadic second-order logic of graphs, II: Infinite graphs of bounded width , 1988, Mathematical systems theory.

[5]  Anil Nerode,et al.  Automatic Presentations of Structures , 1994, LCC.

[6]  Thomas Colcombet,et al.  On Equivalent Representations of Infinite Structures , 2003, ICALP.

[7]  Ahmed Bouajjani,et al.  TReX: A Tool for Reachability Analysis of Complex Systems , 2001, CAV.

[8]  S. Rao Kosaraju,et al.  Decidability of reachability in vector addition systems (Preliminary Version) , 1982, STOC '82.

[9]  Richard L. Tenney,et al.  The decidability of the reachability problem for vector addition systems (Preliminary Version) , 1977, STOC '77.

[10]  Christof Löding,et al.  Transforming structures by set interpretations , 2007, Log. Methods Comput. Sci..

[11]  Charles Rackoff,et al.  The Covering and Boundedness Problems for Vector Addition Systems , 1978, Theor. Comput. Sci..

[12]  Achim Blumensath,et al.  Automatic structures , 2000, Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.99CB36332).

[13]  Rüdiger Valk,et al.  Petri Nets and Regular Languages , 1981, J. Comput. Syst. Sci..

[14]  Rupak Majumdar,et al.  A Perfect Model for Bounded Verification , 2012, 2012 27th Annual IEEE Symposium on Logic in Computer Science.

[15]  Georg Peschke,et al.  The Theory of Ends , 1990 .

[16]  Werner Damm,et al.  The IO- and OI-Hierarchies , 1982, Theor. Comput. Sci..

[17]  Pawel Urzyczyn,et al.  Higher-Order Pushdown Trees Are Easy , 2002, FoSSaCS.

[18]  Wolfgang Thomas,et al.  Automata on Infinite Objects , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[19]  Sophie Tison,et al.  Decidability of the Confluence of Ground Term Rewriting Systems , 1985, LICS.

[20]  Alexei L. Semenov,et al.  Decidability of Monadic Theories , 1984, MFCS.

[21]  Arnaud Carayol,et al.  The Caucal Hierarchy of Infinite Graphs in Terms of Logic and Higher-Order Pushdown Automata , 2003, FSTTCS.

[22]  Michael A. Arbib,et al.  Algebra Automata I: Parallel Programming as a Prolegomena to the Categorical Approach , 1968, Inf. Control..

[23]  Jérôme Leroux Vector Addition System Reversible Reachability Problem , 2011, CONCUR.

[24]  Sylviane R. Schwer The Context-Freeness of the Languages Associated with Vector Addition Systems is Decidable , 1992, Theor. Comput. Sci..

[25]  J. Berstel,et al.  Context-free languages , 1993, SIGA.

[26]  Andrzej Blikle,et al.  Mathematical Foundations of Computer Science , 1974, Lecture Notes in Computer Science.

[27]  Richard M. Karp,et al.  Parallel Program Schemata , 1969, J. Comput. Syst. Sci..

[28]  Jesse B. Wright,et al.  Algebraic Automata and Context-Free Sets , 1967, Inf. Control..

[29]  Vincent Penelle Rewriting Higher-Order Stack Trees , 2015, CSR.

[30]  John Doner,et al.  Tree Acceptors and Some of Their Applications , 1970, J. Comput. Syst. Sci..

[31]  S. Ginsburg,et al.  BOUNDED ALGOL-LIKE LANGUAGES^) , 1964 .

[32]  Grégoire Sutre,et al.  The Context-Freeness Problem Is coNP-Complete for Flat Counter Systems , 2014, ATVA.

[33]  James W. Thatcher,et al.  Generalized Sequential Machine Maps , 1970, J. Comput. Syst. Sci..

[34]  Pierre Wolper,et al.  Symbolic Verification with Periodic Sets , 1994, CAV.

[35]  Bruno Courcelle,et al.  Monadic Second-Order Logic, Graph Coverings and Unfoldings of Transition Systems , 1998, Ann. Pure Appl. Log..

[36]  Lawrence H. Landweber,et al.  Definability in the monadic second-order theory of successor , 1969, Journal of Symbolic Logic.

[37]  Hubert Comon-Lundh,et al.  Multiple Counters Automata, Safety Analysis and Presburger Arithmetic , 1998, CAV.

[38]  Grégoire Sutre,et al.  A Relational Trace Logic for Vector Addition Systems with Application to Context-Freeness , 2013, CONCUR.

[39]  C. A. Petri Fundamentals of a Theory of Asynchronous Information Flow , 1962, IFIP Congress.

[40]  Laure Petrucci,et al.  FAST: acceleration from theory to practice , 2008, International Journal on Software Tools for Technology Transfer.

[41]  S. Ginsburg,et al.  Semigroups, Presburger formulas, and languages. , 1966 .

[42]  Sophie Tison,et al.  The theory of ground rewrite systems is decidable , 1990, [1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science.

[43]  M. Rabin Decidability of second-order theories and automata on infinite trees , 1968 .

[44]  Didier Caucal On Infinite Terms Having a Decidable Monadic Theory , 2002, MFCS.

[45]  Jean-Luc Lambert,et al.  A Structure to Decide Reachability in Petri Nets , 1992, Theor. Comput. Sci..

[46]  Sophie Tison,et al.  Decidability of the Confluence of Finite Ground Term Rewrite Systems and of Other Related Term Rewrite Systems , 1990, Inf. Comput..

[47]  Ernst W. Mayr An Algorithm for the General Petri Net Reachability Problem , 1984, SIAM J. Comput..

[48]  Jesse B. Wright,et al.  Automata in General Algebras , 1967, Inf. Control..

[49]  Christof Löding Model-Checking Infinite Systems Generated by Ground Tree Rewriting , 2002, FoSSaCS.

[50]  John E. Hopcroft,et al.  On the Reachability Problem for 5-Dimensional Vector Addition Systems , 1976, Theor. Comput. Sci..

[51]  Jérôme Leroux,et al.  Presburger Vector Addition Systems , 2013, 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science.

[52]  Marius Bozga,et al.  Fast Acceleration of Ultimately Periodic Relations , 2010, CAV.

[53]  D. Caucal Bisimulation Of Context-Free Grammars And Of Pushdown Automata , 1995 .

[54]  Didier Caucal,et al.  A Chomsky-Like Hierarchy of Infinite Graphs , 2002, MFCS.

[55]  Igor Walukiewicz,et al.  Monadic Second Order Logic on Tree-Like Structures , 1996, STACS.

[56]  Didier Caucal,et al.  On infinite transition graphs having a decidable monadic theory , 1996, Theor. Comput. Sci..

[57]  Alfred V. Aho,et al.  Indexed Grammars—An Extension of Context-Free Grammars , 1967, SWAT.

[58]  Joost Engelfriet,et al.  Iterated Stack Automata and Complexity Classes , 1991, Inf. Comput..

[59]  Colin Stirling,et al.  The Joys of Bisimulation , 1998, MFCS.

[60]  Alain Finkel,et al.  Well-abstracted transition systems: application to FIFO automata , 2003, Inf. Comput..

[61]  Sheila A. Greibach Full AFLs and Nested Iterated Substitution , 1970, Inf. Control..

[62]  Ahmed Bouajjani,et al.  Symbolic Reachability Analysis of FIFO-Channel Systems with Nonregular Sets of Configurations , 1999, Theor. Comput. Sci..

[63]  Arnaud Carayol,et al.  Regular Sets of Higher-Order Pushdown Stacks , 2005, MFCS.

[64]  Jérôme Leroux Acceleration For Presburger Petri Nets , 2013, VPT@CAV.

[65]  Antoine Meyer,et al.  Traces of term-automatic graphs , 2007, RAIRO Theor. Informatics Appl..

[66]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[67]  James W. Thatcher,et al.  Generalized finite automata theory with an application to a decision problem of second-order logic , 1968, Mathematical systems theory.

[68]  Thomas Colcombet On Families of Graphs Having a Decidable First Order Theory with Reachability , 2002, ICALP.

[69]  Jérôme Leroux Vector Addition System Reversible Reachability Problem , 2013, Log. Methods Comput. Sci..

[70]  Michael Yoeli,et al.  Vector Addition Systems and Regular Languages , 1980, J. Comput. Syst. Sci..

[71]  Richard J. Lipton,et al.  Exponential space complete problems for Petri nets and commutative semigroups (Preliminary Report) , 1976, STOC '76.

[72]  Walter S. Brainerd,et al.  The Minimalization of Tree Automata , 1968, Inf. Control..

[73]  Achim Blumensath Prefix-Recognisable Graphs and Monadic Second-Order Logic , 2001 .

[74]  Thomas Colcombet Représentations et propriétés de structures infinies , 2004 .

[75]  Arnaud Carayol Automates infinis, logiques et langages , 2006 .

[76]  Didier Caucal,et al.  On the Regular Structure of Prefix Rewriting , 1990, Theor. Comput. Sci..

[77]  Philippe Darondeau,et al.  Petri Net Reachability Graphs: Decidability Status of FO Properties , 2011, FSTTCS.

[78]  Jérôme Leroux The General Vector Addition System Reachability Problem by Presburger Inductive Invariants , 2009, 2009 24th Annual IEEE Symposium on Logic In Computer Science.

[79]  C. Stirling Decidability of Bisimulation Equivalence for Pushdown Processes , 2000 .

[80]  Didier Caucal,et al.  An Internal Presentation of Regular Graphs by Prefix-Recognizable Graphs , 2001, Theory of Computing Systems.

[81]  Klaus Barthelmann,et al.  On Equational Simple Graphs , 1997 .

[82]  V. Cody Infinite Graphs Generated by Tree Rewriting , 2003 .

[83]  Bruno Courcelle,et al.  Graph Rewriting: An Algebraic and Logic Approach , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.