Quasi-static collapse of two-dimensional granular columns: insight from continuum modelling

We investigate numerically the mechanism governing the quasi-static collapse of two-dimensional granular columns using a recently proposed continuum approach, the particle finite element method (PFEM), which inherits both the solid mathematical foundation of the traditional finite element method and the flexibility of particle methods in simulating ultra-large deformation problems. The typical collapse patterns of granular columns are reproduced in the PFEM simulation and the physical mechanism behind the collapse phenomenon is provided. The collapse processes obtained from the PFEM simulation are compared to experimental observations and discrete element modeling, where a satisfactory agreement is achieved. The effects of the macro density and friction angle of the granular matter, as well as the roughness of the wall surfaces on the quasi-static collapse, are also investigated in this paper. Furthermore, our simulations reveal new quasi-static collapse patterns, as supplements to the ones already observed in the experimental tests, due to the change of the roughness of the basal surface.

[1]  J. Oliver,et al.  PFEM-based modeling of industrial granular flows , 2014, CPM 2014.

[2]  H. Huppert,et al.  Axisymmetric collapses of granular columns , 2004, Journal of Fluid Mechanics.

[3]  E. J. Hinch,et al.  Study of the collapse of granular columns using two-dimensional discrete-grain simulation , 2005, Journal of Fluid Mechanics.

[4]  Herbert E. Huppert,et al.  Static and flowing regions in granular collapses down channels , 2007 .

[5]  X. Olivella,et al.  Particle finite element method applied to granular material flow , 2009 .

[6]  Roberto Zenit,et al.  Computer simulations of the collapse of a granular column , 2005 .

[7]  F. Radjaï,et al.  Collapse dynamics and runout of dense granular materials in a fluid. , 2012, Physical review letters.

[8]  O. Pouliquen,et al.  Granular collapse in a fluid: Role of the initial volume fraction , 2010 .

[9]  P. Wriggers,et al.  An interior‐point algorithm for elastoplasticity , 2007 .

[10]  Kristian Krabbenhoft,et al.  Numerical simulation of a flow-like landslide using the particle finite element method , 2015 .

[11]  R. Sparks,et al.  Unconfined slumping of a granular mass on a slope , 2013 .

[12]  E. J. Hinch,et al.  The spreading of a granular mass: role of grain properties and initial conditions , 2006 .

[13]  O. C. Zienkiewicz,et al.  The Finite Element Method: Its Basis and Fundamentals , 2005 .

[14]  Eugenio Oñate,et al.  A particle finite element method for analysis of industrial forming processes , 2014 .

[15]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[16]  Eric Lajeunesse,et al.  Granular slumping on a horizontal surface , 2005 .

[17]  Kristian Krabbenhoft,et al.  Particle finite element analysis of the granular column collapse problem , 2014 .

[18]  Numerical investigation of the cylinder movement in granular matter. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Keith A. Holsapple Modeling granular material flows: The angle of repose, fluidization and the cliff collapse problem , 2013 .

[20]  Dong Wang,et al.  Particle finite element analysis of large deformation and granular flow problems , 2013 .

[21]  Antonia Larese,et al.  Numerical modelling of landslide‐generated waves with the particle finite element method (PFEM) and a non‐Newtonian flow model , 2016 .

[22]  Jean-Pierre Vilotte,et al.  Spreading of a granular mass on a horizontal plane , 2004 .

[23]  R. Nedderman Statics and Kinematics of Granular Materials: Euler's equation and rates of strain , 1992 .

[24]  J. C. Cante,et al.  On the numerical modeling of granular material flows via the Particle Finite Element Method (PFEM) , 2015 .

[25]  Rich R. Kerswell,et al.  Planar collapse of a granular column: Experiments and discrete element simulations , 2008 .

[26]  Erling D. Andersen,et al.  On implementing a primal-dual interior-point method for conic quadratic optimization , 2003, Math. Program..

[27]  Paul W. Cleary,et al.  Quasi-static fall of planar granular columns: comparison of 2D and 3D discrete element modelling with laboratory experiments , 2009 .

[28]  Herbert E. Huppert,et al.  Granular column collapses: further experimental results , 2007, Journal of Fluid Mechanics.

[29]  Xue Zhang,et al.  Particle finite element method in geomechanics , 2014 .

[30]  Eugenio Oñate,et al.  A unified monolithic approach for multi-fluid flows and fluid–structure interaction using the Particle Finite Element Method with fixed mesh , 2015 .

[31]  Tian-bin Li,et al.  Simulation of Collapse of Granular Columns Using the Discrete Element Method , 2015 .

[32]  Donald Goldfarb,et al.  Second-order cone programming , 2003, Math. Program..

[33]  Kristian Krabbenhoft,et al.  Three-dimensional granular contact dynamics with rolling resistance , 2013 .

[34]  Gert Lube,et al.  Collapses of two-dimensional granular columns. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  Y. Leroy,et al.  Deterministic chaos in frictional wedges revealed by convergence analysis , 2013 .

[36]  Peter Wriggers,et al.  Computational Contact Mechanics , 2002 .

[37]  Two dimensional fall of granular columns controlled by slow horizontal withdrawal of a retaining wall , 2006 .

[38]  Scott W. Sloan,et al.  Second-order cone programming formulation for consolidation analysis of saturated porous media , 2016, Computational Mechanics.

[39]  Vincent Lemiale,et al.  Rate effects in dense granular materials: Linear stability analysis and the fall of granular columns , 2011 .

[40]  S. Pan,et al.  New second-order cone linear complementarity formulation and semi-smooth Newton algorithm for finite element analysis of 3D frictional contact problem , 2011 .

[41]  Wei Chen,et al.  Numerical Simulations for Large Deformation of Granular Materials Using Smoothed Particle Hydrodynamics Method , 2012 .

[42]  Y. Leroy,et al.  Failure in accretionary wedges with the maximum strength theorem: numerical algorithm and 2D validation , 2010 .

[43]  N. Balmforth,et al.  Granular collapse in two dimensions , 2005, Journal of Fluid Mechanics.

[44]  Pedro Arduino,et al.  Simulating granular column collapse using the Material Point Method , 2015 .

[45]  Andrew M. Stuart,et al.  The Dynamics of the Theta Method , 1991, SIAM J. Sci. Comput..

[46]  S. Sloan,et al.  Formulation and solution of some plasticity problems as conic programs , 2007 .

[47]  Olivier Pouliquen,et al.  Granular Media: Between Fluid and Solid , 2013 .

[48]  M. Sivaselvan,et al.  A projected Newton algorithm for the dual convex program of elastoplasticity , 2014 .

[49]  Kristian Krabbenhoft,et al.  A contact dynamics approach to the Granular Element Method , 2014 .