New upper bounds on the order of cages

Let k≥2 and g≥3 be integers. A (k,g)-graph is a k-regular graph with girth (length of a smallest cycle) exactly g. A (k,g)-cage is a (k,g)-graph of minimum order. Let v(k,g) be the order of a (k,g)-cage. The problem of determining v(k,g) is unsolved for most pairs (k,g) and is extremely hard in the general case. It is easy to establish the following lower bounds for v(k,g): v(k,g)≥ k(k−1) (g−1)/2−2 k−2 for g odd, and v(k,g)≥ 2(k−1) g/2−2 k−2 for g even. The best known upper bounds are roughly the squares of the lower bounds. In this paper we establish general upper bounds on v(k,g) which are roughly the 3/2 power of the lower bounds, and we provide explicit constructions for such (k,g)-graphs. Mathematical Reviews Subject Numbers: 05C35, 05C38. Secondary: 05D99.

[1]  Norman L. Biggs,et al.  Note on the girth of Ramanujan graphs , 1990, J. Comb. Theory, Ser. B.

[2]  M. Murty Ramanujan Graphs , 1965 .

[3]  H. Sachs Regular Graphs with Given Girth and Restricted Circuits , 1963 .

[4]  Felix Lazebnik,et al.  A characterization of the components of the graphs D(k, q) , 1996, Discret. Math..

[5]  L. Lovász Combinatorial problems and exercises , 1979 .

[6]  Zoltán Füredi,et al.  Graphs of Prescribed Girth and Bi-Degree , 1995, J. Comb. Theory, Ser. B.

[7]  N. Alon Tools from higher algebra , 1996 .

[8]  Felix Lazebnik,et al.  New Constructions of Bipartite Graphs on m, n Vertices with Many Edges and Without Small Cycles , 1994, J. Comb. Theory, Ser. B.

[9]  Derek Allan Holton,et al.  The Petersen graph , 1993, Australian mathematical society lecture series.

[10]  Béla Bollobás,et al.  Random Graphs , 1985 .

[11]  F. Lazebnik,et al.  A new series of dense graphs of high girth , 1995, math/9501231.

[12]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[13]  B. Bollobás,et al.  Extremal Graph Theory , 2013 .

[14]  H. Montgomery Topics in Multiplicative Number Theory , 1971 .

[15]  Robin J. Wilson The Petersen Graph (Australian Mathematical Society Lecture Series 7) , 1995 .

[16]  H. Sachs,et al.  Regukre Graphen gegebener Taillenweite mit minimaler Knotenzahl , 1963 .

[17]  Pak-Ken Wong,et al.  Cages - a survey , 1982, J. Graph Theory.

[18]  Felix Lazebnik,et al.  Explicit Construction of Graphs with an Arbitrary Large Girth and of Large Size , 1995, Discret. Appl. Math..