A Principled Approach to Score Level Fusion in Multimodal Biometric Systems

A multimodal biometric system integrates information from multiple biometric sources to compensate for the limitations in performance of each individual biometric system. We propose an optimal framework for combining the matching scores from multiple modalities using the likelihood ratio statistic computed using the generalized densities estimated from the genuine and impostor matching scores. The motivation for using generalized densities is that some parts of the score distributions can be discrete in nature; thus, estimating the distribution using continuous densities may be inappropriate. We present two approaches for combining evidence based on generalized densities: (i) the product rule, which assumes independence between the individual modalities, and (ii) copula models, which consider the dependence between the matching scores of multiple modalities. Experiments on the MSU and NIST multimodal databases show that both fusion rules achieve consistently high performance without adjusting for optimal weights for fusion and score normalization on a case-by-case basis.

[1]  Anil K. Jain,et al.  On-line fingerprint verification , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[2]  R. Nelsen An Introduction to Copulas , 1998 .

[3]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[4]  Matthew P. Wand,et al.  Kernel Smoothing , 1995 .

[5]  Anil K. Jain,et al.  Decision-Level Fusion in Fingerprint Verification , 2001, Multiple Classifier Systems.

[6]  Ching Y. Suen,et al.  Optimal combinations of pattern classifiers , 1995, Pattern Recognit. Lett..

[7]  E. Luciano,et al.  Copula methods in finance , 2004 .

[8]  Arun Ross,et al.  Score normalization in multimodal biometric systems , 2005, Pattern Recognit..

[9]  Sharath Pankanti,et al.  A Prototype Hand Geometry-based Verication System , 1999 .

[10]  Arun Ross,et al.  Multibiometric systems , 2004, CACM.

[11]  Xudong Jiang,et al.  Exploiting global and local decisions for multimodal biometrics verification , 2004, IEEE Transactions on Signal Processing.

[12]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Tieniu Tan,et al.  Combining Face and Iris Biometrics for Identity Verification , 2003, AVBPA.

[14]  Arun Ross,et al.  An introduction to biometric recognition , 2004, IEEE Transactions on Circuits and Systems for Video Technology.

[15]  Anil K. Jain,et al.  Large-scale evaluation of multimodal biometric authentication using state-of-the-art systems , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Robert Tibshirani,et al.  An Introduction to the Bootstrap , 1994 .

[17]  E. Luciano,et al.  Copula Methods in Finance: Cherubini/Copula , 2004 .

[18]  Arun Ross,et al.  Information fusion in biometrics , 2003, Pattern Recognit. Lett..

[19]  Stefan Fischer,et al.  Expert Conciliation for Multi Modal Person Authentication Systems by Bayesian Statistics , 1997, AVBPA.

[20]  Josef Kittler,et al.  Audio- and Video-Based Biometric Person Authentication, 5th International Conference, AVBPA 2005, Hilton Rye Town, NY, USA, July 20-22, 2005, Proceedings , 2005, AVBPA.