Review of RGB photoelasticity

Abstract Automatic methods of photoelasticity have had a significant progress with the development of automatic acquisition and image processing methods. This article concerns RGB photoelasticity, which allows the determination of the photoelastic retardation using, usually, a single acquisition of the isochromatic fringes in white light by a colour camera. In particular, the article presents an overview of the main characteristics of RGB photoelasticity that is influence of the quarter-wave plate error, number of acquisitions, type of light source, determination of low and high fringe orders, methods for searching the retardation, scanning procedures, calibration on a material different from that under test, combined use of the RGB and phase shifting methods. A short section on the applications of RGB photoelasticity completes the article.

[1]  M. Scafidi,et al.  Photoelastic analysis of edge residual stresses in glass by the automated tint plate method , 2015, Experimental Techniques.

[2]  K. T. Ramesh,et al.  Three fringe photoelasticity ‐ use of colour image processing hardware to automate ordering of isochromatics , 1996 .

[3]  Minvydas Ragulskis,et al.  Plotting isoclinics for hybrid photoelasticity and finite element analysis , 2004 .

[4]  K. T. Ramesh,et al.  Automation of white light photoelasticity by phase-shifting technique using colour image processing hardware , 1997 .

[5]  Salih N. Akour,et al.  Design of a defence hole system for a shear-loaded plate , 2003 .

[6]  Alejandro Restrepo-Martínez,et al.  Color Spaces Analysis of Photoelasticity Images of Plastics Thin Films , 2011 .

[7]  B. Zuccarello,et al.  Limitation of fourier transform photoelasticity: Influence of isoclinics , 2000 .

[8]  K. T. Ramesh,et al.  Automation of data acquisition in reflection photoelasticity by phaseshifting methodology , 1997 .

[9]  Fu-Pen Chiang,et al.  Color-encoded digital fringe projection technique for high-speed three-dimensional surface contouring , 1999 .

[10]  On interpretation of fringe patterns produced by time average photoelasticity , 2005 .

[11]  Sandro Barone,et al.  Computer aided photoelasticity by an optimum phase stepping method , 2002 .

[12]  S Barone,et al.  Automated photoelasticity in white light: Influence of quarter-wave plates , 1995 .

[13]  F. W. Hecker,et al.  Computer-Aided Measurement of Relative Retardations in Plane Photoelasticity , 1986 .

[14]  Pushparaj Mani Pathak,et al.  Role of photoelasticity in evolving discretization schemes for FE analysis , 1999 .

[15]  Sandro Barone,et al.  A review of automated methods for the collection and analysis of photoelastic data , 1998 .

[16]  M. Scafidi,et al.  Photoelastic Analysis of Edge Residual Stresses in Glass by Automated “Test Fringes” Methods , 2012 .

[17]  Sohan Kale,et al.  Advancing front scanning approach for three-fringe photoelasticity , 2013 .

[18]  Angel García-Botella,et al.  Improved method for isochromatic demodulation by RGB calibration. , 2002, Applied optics.

[19]  Digendranath Swain,et al.  A modified regularized scheme for isochromatic demodulation in RGB photoelasticity , 2014 .

[20]  M. Scafidi,et al.  RGB photoelasticity applied to the analysis of membrane residual stress in glass , 2012 .

[21]  K. T. Ramesh,et al.  Data acquisition techniques in digital photoelasticity: a review , 1998 .

[22]  Sanjay G. Dhande,et al.  Fusion of digital photoelasticity rapid prototyping and rapid tooling technologies , 1999 .

[23]  A. D. Nurse Load-stepping photoelasticity: new developments using temporal phase unwrapping , 2002 .

[24]  G. Petrucci Full-field automatic evaluation of an isoclinic parameter in white light , 1997 .

[26]  Sandro Barone,et al.  A method for reducing the influence of quarter-wave plate errors in phase stepping photoelasticity , 1998 .

[27]  A. Nurse,et al.  Absolute determination of the isochromatic parameter by load-stepping photoelasticity , 1998 .

[28]  Cesar A. Sciammarella,et al.  Experimental Mechanics of Solids , 2012 .

[29]  Sandro Barone,et al.  Towards RGB photoelasticity: Full-field automated photoelasticity in white light , 1995 .

[30]  Wen-Ching Wang,et al.  Time-Averaged Photoelastic Stress Analysis of the Ultrasonic Wave in a Strip , 2006 .

[31]  I. A. Jones,et al.  Complete Fringe Order Determination in Digital Photoelasticity Using Fringe Combination Matching , 2003 .

[32]  J. Desse,et al.  Three-color differential interferometry. , 1997, Applied optics.

[34]  H. S. Lien,et al.  Determination of reflection photoelasticity fringes analysis with digital image-discrete processing , 2008 .

[35]  Lei Zhenkun,et al.  Whole-field determination of isoclinic parameter by five-step color phase shifting and its error analysis , 2003 .

[36]  M. Scafidi,et al.  RGB Photoelasticity: Review and Improvements , 2010 .

[37]  M. Ramji,et al.  Whole field evaluation of stress components in digital photoelasticity—Issues, implementation and application , 2008 .

[38]  Venketesh N. Dubey,et al.  Efficacy of photoelasticity in developing whole-field imaging sensors , 2010 .

[39]  M. Scafidi,et al.  A critical assessment of automatic photoelastic methods for the analysis of edge residual stresses in glass , 2014 .

[40]  K. T. Ramesh,et al.  Noise-Free Determination of Isochromatic Parameter of Stereolithography-Built Models , 2012 .

[41]  K Ramesh,et al.  Digital photoelasticity – A comprehensive review , 2011 .

[42]  J. C. Estrada,et al.  Multiplicative phase-shifting interferometry using optical flow. , 2012, Applied optics.

[43]  Venketesh N. Dubey,et al.  Isochromatic Demodulation by Fringe Scanning , 2006 .

[44]  Gary Cloud,et al.  Optical Methods of Engineering Analysis , 1996 .

[45]  K. T. Ramesh,et al.  The influence of ambient illumination on colour adaptation in three fringe photoelasticity , 2011 .

[46]  Giovanni Petrucci,et al.  Phase shifting photoelasticity in white light , 2007 .

[47]  K. T. Ramesh,et al.  Improved determination of retardation in digital photoelasticity by load stepping , 2000 .

[48]  José A. Gómez-Pedrero,et al.  Measurement of surface topography by RGB Shadow-Moiré with direct phase demodulation , 2006 .

[49]  Steve Haake,et al.  Completely automated photoelastic fringe analysis , 1994 .

[51]  Satoru Yoneyama,et al.  Tricolor photoviscoelastic technique and its application to moving contact , 1998 .

[52]  Masahisa Takashi,et al.  Photoelastic Analysis with a Single Tricolor Image , 1998 .

[53]  K. Ramesh,et al.  Colour adaptation in three fringe photoelasticity using a single image , 2011 .

[54]  B. Zuccarello,et al.  ON THE EFFECTS OF A CRACK PROPAGATING TOWARD THE INTERFACE OF A BIMATERIAL SYSTEM , 2006 .

[55]  João Coelho,et al.  Stress Analysis in Glass Artwork , 2011 .

[56]  Eann A. Patterson,et al.  Integration of spectral and phase-stepping methods in photoelasticity , 1999 .

[57]  W. Sharpe Springer Handbook of Experimental Solid Mechanics , 2008 .

[58]  G. Petrucci,et al.  Developments in RGB Photoelasticity , 2005 .

[59]  T. R. Judge,et al.  Photoelasticity stress analysis using carrier fringe and FFT techniques , 1993 .

[60]  Jean L. Cornillot,et al.  Annual Book of ASTM Standards , 2016 .

[61]  C H Hu,et al.  Digital color encoding and its application to the moirétechnique. , 1997, Applied optics.

[62]  K. Ramesh,et al.  A simple approach to photoelastic calibration of glass using digital photoelasticity , 2013 .

[63]  Anand Asundi,et al.  Full field automated photoelasticity using two- load-step method , 2001 .

[64]  Arkady S. Voloshin,et al.  Automated measurement of birefringence: Development and experimental evaluation of the techniques , 1989 .

[65]  Venketesh N. Dubey,et al.  Noise removal in three-fringe photoelasticity by median filtering , 2009 .

[66]  Eann A. Patterson,et al.  Towards full field automated photoelastic analysis of complex components , 1991 .

[67]  H. Aben,et al.  Photoelasticity of Glass , 1993 .

[68]  Eann A. Patterson,et al.  Simulation of errors in automated photoelasticity , 1998 .

[70]  S. Yoneyama,et al.  Elliptically polarized white light photoviscoelastic technique and its application to viscoelastic fracture , 2002 .

[71]  Eann A. Patterson,et al.  Digital Photoelasticity: Principles, Practice and Potential , 2002 .

[72]  Richard H. Marloff,et al.  Photoelastic determination of stress-intensity factors , 1971 .

[74]  Eisaku Umezaki,et al.  Digitally whole-field analysis of isoclinic parameter in photoelasticity by four-step color phase-shifting technique , 2007 .

[75]  V. Iyengar,et al.  The measurement of the complete photoelastic fringe order using a spectral scanner , 1985 .

[76]  Steve Haake,et al.  The dispersion of birefringence in photoelastic materials , 1993 .

[77]  B. Zuccarello,et al.  The influence of the quarter wave plates in automated photoelasticity , 2002 .

[78]  K. T. Ramesh,et al.  Digital reflection photoelasticity using conventional reflection polariscope , 2010 .

[79]  B. Zuccarello,et al.  Limitation of carrier fringe methods in digital photoelasticity , 2007 .

[80]  A. Pasta,et al.  Numerical simulations and experimental measurements of the stress intensity factor in perforated plates , 2008 .

[81]  Jon R. Lesniak,et al.  An Innovative Polariscope for Photoelastic Stress Analysis , 1998 .

[82]  B. Zuccarello,et al.  Photoelastic stress pattern analysis using Fourier transform with carrier fringes: influence of quarter-wave plate error , 2002 .

[83]  M. Solaguren-Beascoa Fernández DATA ACQUISITION TECHNIQUES IN PHOTOELASTICITY , 2011 .

[84]  Satoru Yoneyama,et al.  A new method for photoelastic fringe analysis from a single image using elliptically polarized white light , 1998 .

[85]  D.E.P. Hoy On the use of color imaging in experimental applications , 1997 .

[87]  Satoru Yoneyama,et al.  Experimental analysis of rolling contact stresses in a viscoelastic strip , 2000 .