Boundary particle method for Laplace transformed time fractional diffusion equations

Highlights? Error analysis and numerical experiments demonstrate the efficiency of our method for time fractional diffusion equations. ? Our method avoids costly convolution integral calculation and dilemmatic selection of time step size. ? A truly boundary-only meshless method is applied to Laplace-transformed inhomogeneous problem. ? Our method effectively simulates 3D long time-history fractional diffusion systems. This paper develops a novel boundary meshless approach, Laplace transformed boundary particle method (LTBPM), for numerical modeling of time fractional diffusion equations. It implements Laplace transform technique to obtain the corresponding time-independent inhomogeneous equation in Laplace space and then employs a truly boundary-only meshless boundary particle method (BPM) to solve this Laplace-transformed problem. Unlike the other boundary discretization methods, the BPM does not require any inner nodes, since the recursive composite multiple reciprocity technique (RC-MRM) is used to convert the inhomogeneous problem into the higher-order homogeneous problem. Finally, the Stehfest numerical inverse Laplace transform (NILT) is implemented to retrieve the numerical solutions of time fractional diffusion equations from the corresponding BPM solutions. In comparison with finite difference discretization, the LTBPM introduces Laplace transform and Stehfest NILT algorithm to deal with time fractional derivative term, which evades costly convolution integral calculation in time fractional derivation approximation and avoids the effect of time step on numerical accuracy and stability. Consequently, it can effectively simulate long time-history fractional diffusion systems. Error analysis and numerical experiments demonstrate that the present LTBPM is highly accurate and computationally efficient for 2D and 3D time fractional diffusion equations.

[1]  Timo Betcke,et al.  Stability and convergence of the method of fundamental solutions for Helmholtz problems on analytic domains , 2007, J. Comput. Phys..

[2]  D. P. Gaver,et al.  Observing Stochastic Processes, and Approximate Transform Inversion , 1966, Oper. Res..

[3]  Yangquan Chen,et al.  Computers and Mathematics with Applications Numerical Approximation of Nonlinear Fractional Differential Equations with Subdiffusion and Superdiffusion , 2022 .

[4]  Zhijun Shen,et al.  General solutions and fundamental solutions of varied orders to the vibrational thin, the Berger, and the Winkler plates , 2005 .

[5]  Peter P. Valko,et al.  Numerical inversion of 2-D Laplace transforms applied to fractional diffusion equations , 2005 .

[6]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[7]  Mingrong Cui,et al.  Compact finite difference method for the fractional diffusion equation , 2009, J. Comput. Phys..

[8]  A. Nowak,et al.  The Multiple reciprocity boundary element method , 1994 .

[9]  Mark M. Meerschaert,et al.  A second-order accurate numerical method for the two-dimensional fractional diffusion equation , 2007, J. Comput. Phys..

[10]  J. Abate,et al.  Multi‐precision Laplace transform inversion , 2004 .

[11]  S. Momani An algorithm for solving the fractional convection–diffusion equation with nonlinear source term , 2007 .

[12]  E. Montroll,et al.  Anomalous transit-time dispersion in amorphous solids , 1975 .

[13]  John T. Katsikadelis,et al.  The BEM for numerical solution of partial fractional differential equations , 2011, Comput. Math. Appl..

[14]  R. Gorenflo,et al.  Discrete random walk models for space-time fractional diffusion , 2002, cond-mat/0702072.

[15]  B. Henry,et al.  The accuracy and stability of an implicit solution method for the fractional diffusion equation , 2005 .

[16]  M. Golberg Boundary integral methods : numerical and mathematical aspects , 1999 .

[17]  Xin Li Convergence of the method of fundamental solutions for solving the boundary value problem of modified Helmholtz equation , 2004, Appl. Math. Comput..

[18]  T. Szabo,et al.  A model for longitudinal and shear wave propagation in viscoelastic media , 2000, The Journal of the Acoustical Society of America.

[19]  Wen Chen,et al.  Winkler plate bending problems by a truly boundary-only boundary particle method , 2009 .

[20]  Fawang Liu,et al.  An implicit RBF meshless approach for time fractional diffusion equations , 2011 .

[21]  Youssef F. Rashed,et al.  A MESH-FREE METHOD FOR LINEAR DIFFUSION EQUATIONS , 1998 .

[22]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[23]  Ward Whitt,et al.  A Unified Framework for Numerically Inverting Laplace Transforms , 2006, INFORMS J. Comput..

[24]  Jingtang Ma,et al.  High-order finite element methods for time-fractional partial differential equations , 2011, J. Comput. Appl. Math..

[25]  G. Fix,et al.  Least squares finite-element solution of a fractional order two-point boundary value problem , 2004 .

[26]  Fawang Liu,et al.  An advanced implicit meshless approach for the non-linear anomalous subdiffusion equation , 2010 .

[27]  Igor M. Sokolov,et al.  Ballistic versus diffusive pair dispersion in the Richardson regime , 2000 .

[28]  Fawang Liu,et al.  Novel Numerical Methods for Solving the Time-Space Fractional Diffusion Equation in Two Dimensions , 2011, SIAM J. Sci. Comput..

[29]  Diego A. Murio,et al.  Implicit finite difference approximation for time fractional diffusion equations , 2008, Comput. Math. Appl..

[30]  P. W. Partridge,et al.  The dual reciprocity boundary element method , 1991 .

[31]  I. Podlubny Fractional differential equations , 1998 .

[32]  StehfestHarald Remark on algorithm 368: Numerical inversion of Laplace transforms , 1970 .

[33]  Hong Wang,et al.  A direct O(N log2 N) finite difference method for fractional diffusion equations , 2010, J. Comput. Phys..

[34]  I. Turner,et al.  Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation , 2005 .

[35]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[36]  Yury F. Luchko,et al.  Algorithms for the fractional calculus: A selection of numerical methods , 2005 .

[37]  Chuanzeng Zhang,et al.  Boundary particle method for Cauchy inhomogeneous potential problems , 2012 .

[38]  Fawang Liu,et al.  Implicit difference approximation for the time fractional diffusion equation , 2006 .

[39]  Qing Hua Qin,et al.  Boundary Particle Method with High-Order Trefftz Functions , 2009 .

[40]  Fawang Liu,et al.  A Fourier method for the fractional diffusion equation describing sub-diffusion , 2007, J. Comput. Phys..

[41]  R. Gorenflo,et al.  Wright functions as scale-invariant solutions of the diffusion-wave equation , 2000 .

[42]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[43]  V E Lynch,et al.  Front dynamics in reaction-diffusion systems with Levy flights: a fractional diffusion approach. , 2002, Physical review letters.

[44]  Hermann Brunner,et al.  Numerical simulations of 2D fractional subdiffusion problems , 2010, J. Comput. Phys..

[45]  Hongguang Sun,et al.  Fractional diffusion equations by the Kansa method , 2010, Comput. Math. Appl..

[46]  Bangti Jin,et al.  A truly boundary-only meshfree method for inhomogeneous problems based on recursive composite multiple reciprocity technique , 2010 .