Spatial sensitivity of macaque inferior temporal neurons

Recent findings in dorsal visual stream areas and computational work raise the question whether neurons at the end station of the ventral visual stream can code for stimulus position. The authors provide the first detailed, quantitative data on the spatial sensitivity of neurons in the anterior part of the inferior temporal cortex (area TE) in awake, fixating monkeys. They observed a large variation in receptive field (RF) size (ranging from 2.8° to 26°). TE neurons differed in their optimal position, with a bias toward the foveal position. Moreover, the RF profiles of most TE neurons could be fitted well with a two‐dimensional Gaussian function. Most neurons had only one region of high sensitivity and showed a smooth decline in sensitivity toward more distal positions. In addition, the authors investigated some of the possible determinants of such spatial sensitivity. First, testing with low‐pass filtered versions of the stimuli revealed that the general preference for the foveal position and the size of the RFs was not due simply to TE neurons receiving input with a lower spatial resolution at more eccentric positions. The foveal position was still preferred after intense low‐pass filtering. Second, although an increase in stimulus size consistently broadened spatial sensitivity profiles, it did not change the qualitative features of these profiles. Moreover, size selectivity of TE neurons was generally position invariant. Overall, the results suggest that TE neurons can code for the position of stimuli in the central region of the visual field. J. Comp. Neurol. 426:505–518, 2000. © 2000 Wiley‐Liss, Inc.

[1]  D. B. Bender,et al.  Visual properties of neurons in inferotemporal cortex of the Macaque. , 1972, Journal of neurophysiology.

[2]  Ralph Roskies,et al.  Fourier Descriptors for Plane Closed Curves , 1972, IEEE Transactions on Computers.

[3]  P. Schiller,et al.  Quantitative studies of single-cell properties in monkey striate cortex. III. Spatial frequency. , 1976, Journal of neurophysiology.

[4]  J. Movshon,et al.  Receptive field organization of complex cells in the cat's striate cortex. , 1978, The Journal of physiology.

[5]  R. Desimone,et al.  Visual areas in the temporal cortex of the macaque , 1979, Brain Research.

[6]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[7]  R. Wurtz,et al.  Visual responses of inferior temporal neurons in awake rhesus monkey. , 1983, Journal of neurophysiology.

[8]  R. Desimone,et al.  Shape recognition and inferior temporal neurons. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[9]  John H. R. Maunsell,et al.  The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability , 1984, Vision Research.

[10]  R. Desimone,et al.  Stimulus-selective properties of inferior temporal neurons in the macaque , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  E. Rolls,et al.  Role of low and high spatial frequencies in the face-selective responses of neurons in the cortex in the superior temporal sulcus in the monkey , 1985, Vision Research.

[12]  B. C. Motter,et al.  Functional properties of parietal visual neurons: mechanisms of directionality along a single axis , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  H. Sakai,et al.  Enhancement of inferior temporal neurons during visual discrimination. , 1987, Journal of neurophysiology.

[14]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. V. Spatial frequency , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  R. F. Hess,et al.  The contrast sensitivity gradient across the human visual field: With emphasis on the low spatial frequency range , 1989, Vision Research.

[16]  W. Merigan,et al.  Spatial resolution across the macaque retina , 1990, Vision Research.

[17]  R. Andersen,et al.  Visual receptive field organization and cortico‐cortical connections of the lateral intraparietal area (area LIP) in the macaque , 1990, The Journal of comparative neurology.

[18]  Keiji Tanaka,et al.  Coding visual images of objects in the inferotemporal cortex of the macaque monkey. , 1991, Journal of neurophysiology.

[19]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[20]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[21]  I. Biederman,et al.  Dynamic binding in a neural network for shape recognition. , 1992, Psychological review.

[22]  H. Komatsu,et al.  Relationships between color, shape, and pattern selectivities of neurons in the inferior temporal cortex of the monkey. , 1993, Journal of neurophysiology.

[23]  G. Orban,et al.  Cue-invariant shape selectivity of macaque inferior temporal neurons. , 1993, Science.

[24]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[25]  Dennis M. Levi,et al.  Spatial scale shifts in peripheral vernier acuity , 1994, Vision Research.

[26]  M. Tovée,et al.  Translation invariance in the responses to faces of single neurons in the temporal visual cortical areas of the alert macaque. , 1994, Journal of neurophysiology.

[27]  R. Desimone,et al.  Inferior temporal mechanisms for invariant object recognition. , 1994, Cerebral cortex.

[28]  Keiji Tanaka,et al.  Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. , 1994, Journal of neurophysiology.

[29]  G. Orban,et al.  Does Practice in Orientation Discrimination Lead to Changes in the Response Properties of Macaque Inferior Temporal Neurons? , 1994, The European journal of neuroscience.

[30]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[31]  Minami Ito,et al.  Size and position invariance of neuronal responses in monkey inferotemporal cortex. , 1995, Journal of neurophysiology.

[32]  N. Logothetis,et al.  Shape representation in the inferior temporal cortex of monkeys , 1995, Current Biology.

[33]  G. Orban,et al.  Shape and Spatial Distribution of Receptive Fields and Antagonistic Motion Surrounds in the Middle Temporal Area (V5) of the Macaque , 1995, The European journal of neuroscience.

[34]  J H Maunsell,et al.  The Brain's Visual World: Representation of Visual Targets in Cerebral Cortex , 1995, Science.

[35]  Daniel C. Kiper,et al.  Development of contrast sensitivity across the visual field in macaque monkeys (Macaca nemestrina) , 1996, Vision Research.

[36]  M. García-Pérez,et al.  Do Channels Shift their Tuning Towards Lower Spatial Frequencies in the Periphery? , 1996, Vision Research.

[37]  E. Rolls,et al.  INVARIANT FACE AND OBJECT RECOGNITION IN THE VISUAL SYSTEM , 1997, Progress in Neurobiology.

[38]  F. Bremmer,et al.  Spatial invariance of visual receptive fields in parietal cortex neurons , 1997, Nature.

[39]  John H. R. Maunsell,et al.  Shape selectivity in primate lateral intraparietal cortex , 1998, Nature.

[40]  E. Miller,et al.  Memory fields of neurons in the primate prefrontal cortex. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[41]  R. Desimone,et al.  Competitive Mechanisms Subserve Attention in Macaque Areas V2 and V4 , 1999, The Journal of Neuroscience.

[42]  Carrie J. McAdams,et al.  Effects of Attention on Orientation-Tuning Functions of Single Neurons in Macaque Cortical Area V4 , 1999, The Journal of Neuroscience.

[43]  Shimon Edelman,et al.  Representation and recognition in vision , 1999 .

[44]  R. Vogels Categorization of complex visual images by rhesus monkeys. Part 2: single‐cell study , 1999, The European journal of neuroscience.

[45]  C. Connor,et al.  Responses to contour features in macaque area V4. , 1999, Journal of neurophysiology.

[46]  Ralph M. Siegel,et al.  Optic Flow Selectivity in the Anterior Superior Temporal Polysensory Area, STPa, of the Behaving Monkey , 1999, The Journal of Neuroscience.

[47]  G. Orban,et al.  Shape interactions in macaque inferior temporal neurons. , 1999, Journal of neurophysiology.

[48]  M. Tarr,et al.  Visual Object Recognition , 1996, ISTCS.