A Hybrid Reconstruction Method for Quantitative PAT

The objective of quantitative photoacoustic tomography (qPAT) is to reconstruct the diffusion and absorption properties of a medium from data of absorbed energy distribution inside the medium. Mathematically, qPAT can be formulated as an inverse coefficient problem for the diffusion equation. Past research showed that if the boundary values of the coefficients are known, then the interior values of the coefficients can be uniquely and stably reconstructed with two well-chosen data sets. We propose a hybrid numerical reconstruction procedure for qPAT that uses both interior energy data and boundary current data. We show that these data allow the unique reconstruction of the boundary and interior values of the coefficients. The numerical implementation is based on reformulating the inverse coefficient problem as a nonlinear optimization problem. An explicit reconstruction scheme is utilized to eliminate the unknown coefficients inside the medium so that we need only minimize over the boundary values, which ...

[1]  Rakesh,et al.  Determining a Function from Its Mean Values Over a Family of Spheres , 2004, SIAM J. Math. Anal..

[2]  S. B. Childs,et al.  INVERSE PROBLEMS IN PARTIAL DIFFERENTIAL EQUATIONS. , 1968 .

[3]  Jorge Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[4]  Yuan Xu,et al.  Exact frequency-domain reconstruction for thermoacoustic tomography. I. Planar geometry , 2002, IEEE Transactions on Medical Imaging.

[5]  S. Arridge Optical tomography in medical imaging , 1999 .

[6]  Andreas Rieder,et al.  Local inversion of the sonar transform regularized by the approximate inverse , 2011 .

[7]  G Paltauf,et al.  Weight factors for limited angle photoacoustic tomography , 2009, Physics in medicine and biology.

[8]  Roger J Zemp Quantitative photoacoustic tomography with multiple optical sources. , 2010, Applied optics.

[9]  Otmar Scherzer,et al.  Thermoacoustic computed tomography with large planar receivers , 2004 .

[10]  Guillaume Bal,et al.  Multi-source quantitative PAT in diffusive regime , 2011 .

[11]  Markus Haltmeier Inversion Formulas for a Cylindrical Radon Transform , 2011, SIAM J. Imaging Sci..

[12]  L. Kunyansky,et al.  Explicit inversion formulae for the spherical mean Radon transform , 2006, math/0609341.

[13]  Hongkai Zhao,et al.  An Efficient Neumann Series-Based Algorithm for Thermoacoustic and Photoacoustic Tomography with Variable Sound Speed , 2011, SIAM J. Imaging Sci..

[14]  Guillaume Bal,et al.  Non-uniqueness result for a hybrid inverse problem , 2010 .

[15]  E. T. Quinto,et al.  Range descriptions for the spherical mean Radon transform. I. Functions supported in a ball , 2006, math/0606314.

[16]  M. Haltmeier,et al.  Exact and approximative imaging methods for photoacoustic tomography using an arbitrary detection surface. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Vasilis Ntziachristos,et al.  Fast Semi-Analytical Model-Based Acoustic Inversion for Quantitative Optoacoustic Tomography , 2010, IEEE Transactions on Medical Imaging.

[18]  Lihong V Wang,et al.  Photoacoustic tomography and sensing in biomedicine , 2009, Physics in medicine and biology.

[19]  Simon R. Arridge,et al.  Multiple Illumination Quantitative Photoacoustic Tomography using Transport and Diffusion Models , 2011 .

[20]  Linh V. Nguyen,et al.  Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media , 2008 .

[21]  Lihong V Wang,et al.  Universal back-projection algorithm for photoacoustic computed tomography , 2005, SPIE BiOS.

[22]  Paul C. Beard,et al.  Photoacoustic tomography with a limited-aperture planar sensor and a reverberant cavity , 2007 .

[23]  Edward Z. Zhang,et al.  Acoustic attenuation compensation in photoacoustic tomography: application to high-resolution 3D imaging of vascular networks in mice , 2011, BiOS.

[24]  Jan Laufer,et al.  Quantitative determination of chromophore concentrations from 2D photoacoustic images using a nonlinear model-based inversion scheme. , 2010, Applied optics.

[25]  S. Osher,et al.  Quantitative Photoacoustic Tomography , 2012 .

[26]  Debasish Roy,et al.  Quantitative photoacoustic tomography from boundary pressure measurements: noniterative recovery of optical absorption coefficient from the reconstructed absorbed energy map. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[27]  Dustin Steinhauer A Uniqueness Theorem for Thermoacoustic Tomography in the Case of Limited Boundary Data , 2009 .

[28]  Guillaume Bal,et al.  On multi-spectral quantitative photoacoustic tomography in diffusive regime , 2012 .

[29]  Eric Todd Quinto,et al.  Injectivity Sets for the Radon Transform over Circles and Complete Systems of Radial Functions , 1996 .

[30]  Habib Ammari,et al.  Quantitative Photo-Acoustic Imaging of Small Absorbers , 2009 .

[31]  Markus Haltmeier,et al.  Experimental evaluation of reconstruction algorithms for limited view photoacoustic tomography with line detectors , 2007 .

[32]  Peter Kuchment,et al.  Uniqueness of reconstruction and an inversion procedure for thermoacoustic and photoacoustic tomography with variable sound speed , 2007, 0706.0598.

[33]  Habib Ammari,et al.  An Introduction to Mathematics of Emerging Biomedical Imaging , 2008 .

[34]  B. Cox,et al.  Photoacoustic tomography in absorbing acoustic media using time reversal , 2010 .

[35]  Habib Ammari Optical, ultrasound, and opto-acoustic tomographies , 2012 .

[36]  Gaik Ambartsoumian,et al.  Inversion of the circular Radon transform on an annulus , 2010 .

[37]  Habib Ammari,et al.  Photoacoustic Imaging for Attenuating Acoustic Media , 2012 .

[38]  Plamen Stefanov,et al.  Multi-wave methods via ultrasound , 2013 .

[39]  Simon R Arridge,et al.  Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method. , 2006, Applied optics.

[40]  Otmar Scherzer,et al.  Filtered backprojection for thermoacoustic computed tomography in spherical geometry , 2005, Mathematical Methods in the Applied Sciences.

[41]  Guillaume Bal,et al.  Reconstruction of Coefficients in Scalar Second‐Order Elliptic Equations from Knowledge of Their Solutions , 2011, 1111.5051.

[42]  Minghua Xu,et al.  Exact frequency-domain reconstruction for thermoacoustic tomography. II. Cylindrical geometry , 2002, IEEE Transactions on Medical Imaging.

[43]  Eric Todd Quinto,et al.  Helgason's Support Theorem and Spherical Radon Transforms , 2008 .

[44]  Plamen Stefanov,et al.  Recovery of a source term or a speed with one measurement and applications , 2011, 1103.1097.

[45]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[46]  Frank Natterer,et al.  Photo-acoustic inversion in convex domains , 2012 .

[47]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[48]  Habib Ammari,et al.  Mathematical Modeling in Photoacoustic Imaging of Small Absorbers , 2010, SIAM Rev..

[49]  R. Zemp,et al.  Estimating optical absorption, scattering, and Grueneisen distributions with multiple-illumination photoacoustic tomography. , 2011, Applied optics.

[50]  Stanley Osher,et al.  Bregman methods in quantitative photoacoustic tomography , 2010 .

[51]  Lihong V. Wang,et al.  Photoacoustic imaging in biomedicine , 2006 .

[52]  O. Scherzer Handbook of mathematical methods in imaging , 2011 .

[53]  Peter Kuchment,et al.  Mathematics of Hybrid Imaging: A Brief Review , 2011, 1107.2447.

[54]  Kui Ren,et al.  Quantitative photoacoustic imaging in the radiative transport regime , 2012, 1207.4664.

[55]  Alexandru Tamasan,et al.  Conductivity imaging with a single measurement of boundary and interior data , 2007 .

[56]  Guillaume Bal,et al.  Inverse transport theory of photoacoustics , 2009, 0908.4012.

[57]  S. Arridge,et al.  Estimating chromophore distributions from multiwavelength photoacoustic images. , 2009, Journal of the Optical Society of America. A, Optics, image science, and vision.

[58]  Josselin Garnier,et al.  Time reversal in attenuating acoustic media , 2010 .

[59]  Otmar Scherzer,et al.  Reconstruction formulas for photoacoustic sectional imaging , 2011, 1109.0841.

[60]  Peter Kuchment,et al.  Range conditions for a spherical mean transform , 2009, 0902.4272.

[61]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[62]  A. Klose,et al.  Quasi-Newton methods in optical tomographic image reconstruction , 2003 .

[63]  B T Cox,et al.  Photoacoustic tomography with a single detector in a reverberant cavity. , 2009, The Journal of the Acoustical Society of America.

[64]  Lihong V. Wang Ultrasound-Mediated Biophotonic Imaging: A Review of Acousto-Optical Tomography and Photo-Acoustic Tomography , 2004, Disease markers.

[65]  Linh V. Nguyen A family of inversion formulas in thermoacoustic tomography , 2009, 0902.2579.

[66]  Carl Tim Kelley,et al.  Iterative methods for optimization , 1999, Frontiers in applied mathematics.

[67]  Kui Ren,et al.  Recent Developments in Numerical Techniques for Transport-Based Medical Imaging Methods , 2010 .

[68]  P. Kuchment,et al.  Mathematics of thermoacoustic tomography , 2007, European Journal of Applied Mathematics.

[69]  Lihong V. Wang,et al.  Reconstructions in limited-view thermoacoustic tomography. , 2004, Medical physics.

[70]  Guillaume Bal,et al.  Frequency Domain Optical Tomography Based on the Equation of Radiative Transfer , 2006, SIAM J. Sci. Comput..

[71]  Peter Kuchment,et al.  Stabilizing inverse problems by internal data , 2011, 1110.1819.

[72]  Yulia Hristova,et al.  Time reversal in thermoacoustic tomography—an error estimate , 2008, 0812.0606.

[73]  Markus Haltmeier,et al.  Inversion of Spherical Means and the Wave Equation in Even Dimensions , 2007, SIAM J. Appl. Math..

[74]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[75]  Qiang Wang,et al.  Reconstruction of optical absorption coefficient maps of heterogeneous media by photoacoustic tomography coupled with diffusion equation based regularized Newton method. , 2007, Optics express.

[76]  Lihong V. Wang,et al.  Tutorial on Photoacoustic Microscopy and Computed Tomography , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[77]  B. T. Cox,et al.  The challenges for quantitative photoacoustic imaging , 2009, BiOS.

[78]  Hua-bei Jiang,et al.  Integrated diffuse optical tomography and photoacoustic tomography: phantom validations , 2011, Biomedical optics express.

[79]  Guillaume Bal,et al.  Inverse diffusion theory of photoacoustics , 2009, 0910.2503.

[80]  G. Uhlmann,et al.  Thermoacoustic tomography with variable sound speed , 2009, 0902.1973.

[81]  Habib Ammari,et al.  Reconstruction of the Optical Absorption Coefficient of a Small Absorber from the Absorbed Energy Density , 2011, SIAM J. Appl. Math..

[82]  Otmar Scherzer,et al.  Simultaneous Reconstructions of Absorption Density and Wave Speed with Photoacoustic Measurements , 2011, SIAM J. Appl. Math..

[83]  Dustin Steinhauer A Reconstruction Procedure for Thermoacoustic Tomography in the Case of Limited Boundary Data , 2009 .

[84]  Vasilis Ntziachristos,et al.  Quantitative point source photoacoustic inversion formulas for scattering and absorbing media. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[85]  Minghua Xu,et al.  Erratum: Universal back-projection algorithm for photoacoustic computed tomography [Phys. Rev. E 71, 016706 (2005)] , 2007 .

[86]  Plamen Stefanov,et al.  Thermoacoustic tomography arising in brain imaging , 2010, 1009.1687.