Metric Regularity. Theory and Applications - a survey
暂无分享,去创建一个
[1] David Preiss,et al. A generalization of the interior mapping theorem of Clarke and Pourciau , 1987 .
[2] J. Robbin,et al. Transversal mappings and flows , 2008 .
[3] Stephen M. Robinson,et al. Strongly Regular Generalized Equations , 1980, Math. Oper. Res..
[4] A. Dontchev,et al. Lyusternik-Graves Theorem and Fixed Points II , 2012 .
[5] Vera Zeidan,et al. Generalized Jacobian for Functions with Infinite Dimensional Range and Domain , 2006 .
[6] L. Thibault,et al. Metric regularity for strongly compactly Lipschitzian mappings , 1995 .
[7] A. Ioffe. Nonsmooth analysis: differential calculus of nondifferentiable mappings , 1981 .
[8] M. Nashed,et al. On the cones of tangents with applications to mathematical programming , 1974 .
[9] Nathan van de Wouw,et al. Non-smooth Analysis , 2008 .
[10] H. Frankowska. Some inverse mapping theorems , 1990 .
[11] A. Ioffe. Approximate subdifferentials and applications 3: the metric theory , 1989 .
[12] A. Lewis,et al. A nonsmooth Morse–Sard theorem for subanalytic functions , 2006, Journal of Mathematical Analysis and Applications.
[13] Lionel Thibault,et al. Metric regularity and subdifferential calculus in Banach spaces , 1995 .
[14] Lawrence M. Graves,et al. Some mapping theorems , 1950 .
[15] B. Mordukhovich,et al. On Nonconvex Subdifferential Calculus in Banach Spaces , 1995 .
[16] D. Azé,et al. Variational pairs and applications to stability in nonsmooth analysis , 2002 .
[17] Jean-Pierre Crouzeix,et al. Condition numbers and error bounds in convex programming , 2008, Math. Program..
[18] R. Tyrrell Rockafellar,et al. Characterizations of Strong Regularity for Variational Inequalities over Polyhedral Convex Sets , 1996, SIAM J. Optim..
[19] R. Cominetti. Metric regularity, tangent sets, and second-order optimality conditions , 1990 .
[20] R. Tyrrell Rockafellar,et al. Monotone processes of convex and concave type , 1967 .
[21] Jean-Noël Corvellec,et al. On some variational properties of metric spaces , 2009 .
[22] A. S. Lewis,et al. Ill-Conditioned Convex Processes and Conic Linear Systems , 1999, Math. Oper. Res..
[23] S. M. Robinson. First Order Conditions for General Nonlinear Optimization , 1976 .
[24] A. Ioffe. On the theory of subdifferentials , 2012 .
[26] U. Rothblum,et al. Relationships of properties of piecewise affine maps over ordered fields , 1990 .
[27] Michel Théra,et al. Error Bounds and Implicit Multifunction Theorem in Smooth Banach Spaces and Applications to Optimization , 2004 .
[28] A. D. Ioffe. Regularity on a Fixed Set , 2011, SIAM J. Optim..
[29] Jonathan M. Borwein,et al. Adjoint Process Duality , 1983, Math. Oper. Res..
[30] Asen L. Dontchev,et al. Characterizations of Lipschitz Stability in Optimization , 1995 .
[31] A. F. Filippov. Classical Solutions of Differential Equations with Multi-Valued Right-Hand Side , 1967 .
[32] F. Clarke. Necessary Conditions In Dynamic Optimization , 2005 .
[33] F. Clarke. Optimization And Nonsmooth Analysis , 1983 .
[34] Xi Yin Zheng,et al. Metric Regularity and Constraint Qualifications for Convex Inequalities on Banach Spaces , 2003, SIAM J. Optim..
[35] L. Thibault,et al. Coderivatives of multivalued mappings, locally compact cones and metric regularity , 1999 .
[36] Boris Polyak,et al. The method of projections for finding the common point of convex sets , 1967 .
[37] M. Coste. AN INTRODUCTION TO O-MINIMAL GEOMETRY , 2002 .
[38] Huynh van Ngai,et al. Stability of Error Bounds for Convex Constraint Systems in Banach Spaces , 2010, SIAM J. Optim..
[39] A. D. Ioffe. DIRECTIONAL COMPACTNESS, SCALARIZATION AND NONSMOOTH SEMI-FREDHOLM MAPPINGS This research was su , 1997 .
[40] Frank H. Clarke,et al. A New Approach to Lagrange Multipliers , 1976, Math. Oper. Res..
[41] D. Azé,et al. On the Sensitivity Analysis of Hoffman Constants for Systems of Linear Inequalities , 2002, SIAM J. Optim..
[42] Wen Song,et al. Calmness and Error Bounds for Convex Constraint Systems , 2006, SIAM J. Optim..
[43] F. Clarke. Necessary conditions for nonsmooth problems in-optimal control and the calculus of variations , 1991 .
[44] Stephen M. Robinson,et al. Normal Maps Induced by Linear Transformations , 1992, Math. Oper. Res..
[45] A. Hoffman. On approximate solutions of systems of linear inequalities , 1952 .
[46] John McGregor,et al. Openness , 2007, J. Object Technol..
[47] B. Dundas,et al. DIFFERENTIAL TOPOLOGY , 2002 .
[48] A. Lewis,et al. Error Bounds for Convex Inequality Systems , 1998 .
[49] Vlastimil Pták,et al. A quantitative refinement of the closed graph theorem , 1974 .
[50] R. Tyrrell Rockafellar,et al. Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.
[51] J. Schauder. Über die Umkehrung linearer, stetiger Funktionaloperationen , .
[52] S. M. Robinson. Stability Theory for Systems of Inequalities. Part I: Linear Systems , 1975 .
[53] Stephen M. Robinson,et al. An Implicit-Function Theorem for a Class of Nonsmooth Functions , 1991, Math. Oper. Res..
[54] A. Sard,et al. The measure of the critical values of differentiable maps , 1942 .
[55] Corneliu Ursescu,et al. Linear openness of multifunctions in metric spaces , 2005, Int. J. Math. Math. Sci..
[56] Vera Zeidan,et al. Infinite dimensional clarke generalized Jacobian , 2007 .
[57] J. Warga. Controllability and Necessary Conditions in Unilateral Problems without Differentiability Assumptions , 1976 .
[58] Peter Fusek,et al. On Metric Regularity for Weakly Almost Piecewise Smooth Functions and Some Applications in Nonlinear Semidefinite Programming , 2013, SIAM J. Optim..
[59] J. Aubin. Contingent Derivatives of Set-Valued Maps and Existence of Solutions to Nonlinear Inclusions and Differential Inclusions. , 1980 .
[60] D. Russell Luke,et al. Nonconvex Notions of Regularity and Convergence of Fundamental Algorithms for Feasibility Problems , 2012, SIAM J. Optim..
[61] A. Kruger. About Regularity of Collections of Sets , 2006 .
[62] J. Penot. Metric regularity, openness and Lipschitzian behavior of multifunctions , 1989 .
[64] F. J. A. Artacho,et al. Characterization of Metric Regularity of Subdifferentials , 2008 .
[65] A. Dontchev. The Graves Theorem Revisited , 1996 .
[66] Valeri Obukhovskii,et al. Locally covering maps in metric spaces and coincidence points , 2009 .
[67] On Implicit Multifunction Theorems , 2008 .
[68] Dmitriy Drusvyatskiy,et al. Quadratic growth and critical point stability of semi-algebraic functions , 2013, Math. Program..
[69] Yoshiyuki Sekiguchi,et al. Regularity estimates for convex multifunctions , 2009, Math. Program..
[70] L. Thibault,et al. Chain rules for coderivatives of multivalued mappings in Banach spaces , 1998 .
[71] Jean-Pierre Aubin,et al. Lipschitz Behavior of Solutions to Convex Minimization Problems , 1984, Math. Oper. Res..
[72] A. Kruger,et al. Generalized differentials of nonsmooth functions, and necessary conditions for an extremum , 1985 .
[73] J. Penot. Calculus Without Derivatives , 2012 .
[74] L. Thibault,et al. Verifiable conditions for openness and regularity of multivalued mappings in Banach spaces , 1995 .
[75] Lionel Thibault,et al. Approximate subdifferential and metric regularity: The finite-dimensional case , 1990, Math. Program..
[76] Boris S. Mordukhovich,et al. Applying Metric Regularity to Compute a Condition Measure of a Smoothing Algorithm for Matrix Games , 2010, SIAM J. Optim..
[77] Yu. S. Ledyaev,et al. Nonsmooth analysis and control theory , 1998 .
[78] Alexander D. Ioffe. On regularity estimates for mappings between embedded manifolds , 2007 .
[79] Zsolt Páles,et al. Inverse and Implicit Function Theorems for Nonsmooth Maps in Banach Spaces , 1997 .
[80] B. Mordukhovich,et al. Nonsmooth sequential analysis in Asplund spaces , 1996 .
[81] B. Mordukhovich. Variational analysis and generalized differentiation , 2006 .
[82] Diethard Klatte,et al. Optimization methods and stability of inclusions in Banach spaces , 2008, Math. Program..
[83] Jean-Paul Penot,et al. Subtraction Theorems and Approximate Openness for Multifunctions: Topological and Infinitesimal Viewpoints☆ , 1998 .
[85] Heinz H. Bauschke,et al. On Projection Algorithms for Solving Convex Feasibility Problems , 1996, SIAM Rev..
[86] F. Clarke,et al. Topological Geometry: THE INVERSE FUNCTION THEOREM , 1981 .
[87] Radek Cibulka,et al. A note on Robinson–Ursescu and Lyusternik–Graves theorem , 2013, Math. Program..
[88] C. Zălinescu. Convex analysis in general vector spaces , 2002 .
[89] A. Ioffe. Metric regularity and subdifferential calculus , 2000 .
[90] Dmitriy Drusvyatskiy,et al. Semi-algebraic functions have small subdifferentials , 2010, Math. Program..
[91] R. Rockafellar,et al. The radius of metric regularity , 2002 .
[92] Adrian S. Lewis,et al. Ill-Conditioned Inclusions , 2001 .
[93] R. Rockafellar,et al. Implicit Functions and Solution Mappings , 2009 .
[94] A. Ioffe. Necessary and Sufficient Conditions for a Local Minimum. 3: Second Order Conditions and Augmented Duality , 1979 .
[95] F. Clarke. Generalized gradients and applications , 1975 .
[96] A. Kruger,et al. A covering theorem for set-valued mappings , 1988 .
[97] Marie-Françoise Roy,et al. Real algebraic geometry , 1992 .
[98] B. Mordukhovich. Complete characterization of openness, metric regularity, and Lipschitzian properties of multifunctions , 1993 .
[99] M. Fabian,et al. On primal regularity estimates for single-valued mappings , 2015 .
[100] Boris S. Mordukhovich,et al. Variational Analysis in Semi-Infinite and Infinite Programming, I: Stability of Linear Inequality Systems of Feasible Solutions , 2009, SIAM J. Optim..
[101] Louis Nirenberg,et al. Topics in Nonlinear Functional Analysis , 2001 .
[102] J. Borwein,et al. Verifiable necessary and sufficient conditions for openness and regularity of set-valued and single-valued maps , 1988 .
[103] J. Penot,et al. SUBDIFFERENTIALS OF PERFORMANCE FUNCTIONS AND CALCULUS OF CODERIVATIVES OF SET-VALUED MAPPINGS , 1996 .
[104] J. Aubin. Set-valued analysis , 1990 .
[105] Jean-Noël Corvellec,et al. Characterizations of error bounds for lower semicontinuous functions on metric spaces , 2004 .
[106] Helmut Gfrerer,et al. First Order and Second Order Characterizations of Metric Subregularity and Calmness of Constraint Set Mappings , 2011, SIAM J. Optim..
[107] Stephen M. Robinson,et al. Regularity and Stability for Convex Multivalued Functions , 1976, Math. Oper. Res..
[108] Jonathan M. Borwein,et al. Norm duality for convex processes and applications , 1986 .
[109] Richard B. Vinter,et al. Optimal Control , 2000 .
[110] A. Ioffe. Approximate subdifferentials and applications. I. The finite-dimensional theory , 1984 .
[111] Dmitriy Drusvyatskiy,et al. Tilt Stability, Uniform Quadratic Growth, and Strong Metric Regularity of the Subdifferential , 2012, SIAM J. Optim..
[112] Huynh van Ngai,et al. Implicit multifunction theorems in complete metric spaces , 2013, Math. Program..
[113] R. Tyrrell Rockafellar,et al. Tilt Stability of a Local Minimum , 1998, SIAM J. Optim..
[114] A. Ioffe. Variational analysis and mathematical economics 2: Nonsmooth regular economies , 2011 .
[115] D. Ralph. A new proof of Robinson's homeomorphism theorem for pl-normal maps , 1993 .
[116] Asen L. Dontchev,et al. Lyusternik-Graves theorem and fixed points , 2011 .
[117] Kung Fu Ng,et al. Error Bounds for Some Convex Functions and Distance Composite Functions , 2005, SIAM J. Optim..
[118] K. W. Meng,et al. Equivalent Conditions for Local Error Bounds , 2012 .
[119] Alexander D. Ioffe,et al. On Metric and Calmness Qualification Conditions in Subdifferential Calculus , 2008 .
[120] D. Azé,et al. A Unified Theory for Metric Regularity of Multifunctions , 2006 .
[121] Adrian S. Lewis,et al. Local Linear Convergence for Alternating and Averaged Nonconvex Projections , 2009, Found. Comput. Math..
[122] S. M. Robinson. Normed convex processes , 1972 .
[123] A. Ioffe. Polyhedrality,Complementarity and Regularity with Applications to Variational Inequalities over Polyhedral Sets , 2015, 1508.06607.
[124] E. De Giorgi,et al. PROBLEMI DI EVOLUZIONE IN SPAZI METRICI , 1980 .
[125] V. Tikhomirov,et al. Fundamental principles of the theory of extremal problems , 1986 .
[126] F. Facchinei,et al. Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .
[127] A. Ioffe,et al. On the local surjection property , 1987 .
[128] A. Ioffe. Variational methods in local and global non-smooth analysis , 1999 .
[129] A. Ioffe. Critical values of set-valued maps with stratifiable graphs. Extensions of Sard and Smale-Sard theorems , 2008 .
[130] Andrei Dmitruk,et al. LYUSTERNIK'S THEOREM AND THE THEORY OF EXTREMA , 1980 .
[131] Georges Comte,et al. Tame Geometry with Application in Smooth Analysis , 2004, Lecture notes in mathematics.
[132] F. J. A. Artacho,et al. Metric subregularity of the convex subdifferential in Banach spaces , 2013, 1303.3654.
[133] L. Hörmander. Sur la fonction d’appui des ensembles convexes dans un espace localement convexe , 1955 .
[134] Aris Daniilidis,et al. Sard theorems for Lipschitz functions and applications in optimization , 2016 .
[135] S. Banach,et al. Théorie des opérations linéaires , 1932 .
[136] Wu Li,et al. Asymptotic constraint qualifications and global error bounds for convex inequalities , 1999, Math. Program..