Metric Regularity. Theory and Applications - a survey

Metric regularity has emerged during last 2-3 decades as one of the central concepts of variational analysis. The roots of this concept go back to a circle of fundamental regularity ideas of classical analysis embodied in such results as the implicit function theorem, Banach open mapping theorem, theorems of Lyusternik and Graves, on the one hand, and the Sard theorem and the Thom-Smale transversality theory, on the other. The three principal themes that are in the focus of attention are: (a) regularity criteria (containing quantitative estimates for rates of regularity) including formal comparisons of their relative power and precision; (b) stability problems relating to the effect of perturbations of the mapping on its regularity properties, on the one hand, and to solutions of equations, inclusions etc. on the other; (c) role of metric regularity in analysis and optimization. All of them are studied at three levels of generality: the general theory for (set-valued) mappings between metric spaces is followed by a detailed study of Banach and finite dimensional theories. There is a number of new results, both theoretical and relating to applications, and some known results are supplied with new, usually simpler, proofs.

[1]  David Preiss,et al.  A generalization of the interior mapping theorem of Clarke and Pourciau , 1987 .

[2]  J. Robbin,et al.  Transversal mappings and flows , 2008 .

[3]  Stephen M. Robinson,et al.  Strongly Regular Generalized Equations , 1980, Math. Oper. Res..

[4]  A. Dontchev,et al.  Lyusternik-Graves Theorem and Fixed Points II , 2012 .

[5]  Vera Zeidan,et al.  Generalized Jacobian for Functions with Infinite Dimensional Range and Domain , 2006 .

[6]  L. Thibault,et al.  Metric regularity for strongly compactly Lipschitzian mappings , 1995 .

[7]  A. Ioffe Nonsmooth analysis: differential calculus of nondifferentiable mappings , 1981 .

[8]  M. Nashed,et al.  On the cones of tangents with applications to mathematical programming , 1974 .

[9]  Nathan van de Wouw,et al.  Non-smooth Analysis , 2008 .

[10]  H. Frankowska Some inverse mapping theorems , 1990 .

[11]  A. Ioffe Approximate subdifferentials and applications 3: the metric theory , 1989 .

[12]  A. Lewis,et al.  A nonsmooth Morse–Sard theorem for subanalytic functions , 2006, Journal of Mathematical Analysis and Applications.

[13]  Lionel Thibault,et al.  Metric regularity and subdifferential calculus in Banach spaces , 1995 .

[14]  Lawrence M. Graves,et al.  Some mapping theorems , 1950 .

[15]  B. Mordukhovich,et al.  On Nonconvex Subdifferential Calculus in Banach Spaces , 1995 .

[16]  D. Azé,et al.  Variational pairs and applications to stability in nonsmooth analysis , 2002 .

[17]  Jean-Pierre Crouzeix,et al.  Condition numbers and error bounds in convex programming , 2008, Math. Program..

[18]  R. Tyrrell Rockafellar,et al.  Characterizations of Strong Regularity for Variational Inequalities over Polyhedral Convex Sets , 1996, SIAM J. Optim..

[19]  R. Cominetti Metric regularity, tangent sets, and second-order optimality conditions , 1990 .

[20]  R. Tyrrell Rockafellar,et al.  Monotone processes of convex and concave type , 1967 .

[21]  Jean-Noël Corvellec,et al.  On some variational properties of metric spaces , 2009 .

[22]  A. S. Lewis,et al.  Ill-Conditioned Convex Processes and Conic Linear Systems , 1999, Math. Oper. Res..

[23]  S. M. Robinson First Order Conditions for General Nonlinear Optimization , 1976 .

[24]  A. Ioffe On the theory of subdifferentials , 2012 .

[26]  U. Rothblum,et al.  Relationships of properties of piecewise affine maps over ordered fields , 1990 .

[27]  Michel Théra,et al.  Error Bounds and Implicit Multifunction Theorem in Smooth Banach Spaces and Applications to Optimization , 2004 .

[28]  A. D. Ioffe Regularity on a Fixed Set , 2011, SIAM J. Optim..

[29]  Jonathan M. Borwein,et al.  Adjoint Process Duality , 1983, Math. Oper. Res..

[30]  Asen L. Dontchev,et al.  Characterizations of Lipschitz Stability in Optimization , 1995 .

[31]  A. F. Filippov Classical Solutions of Differential Equations with Multi-Valued Right-Hand Side , 1967 .

[32]  F. Clarke Necessary Conditions In Dynamic Optimization , 2005 .

[33]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[34]  Xi Yin Zheng,et al.  Metric Regularity and Constraint Qualifications for Convex Inequalities on Banach Spaces , 2003, SIAM J. Optim..

[35]  L. Thibault,et al.  Coderivatives of multivalued mappings, locally compact cones and metric regularity , 1999 .

[36]  Boris Polyak,et al.  The method of projections for finding the common point of convex sets , 1967 .

[37]  M. Coste AN INTRODUCTION TO O-MINIMAL GEOMETRY , 2002 .

[38]  Huynh van Ngai,et al.  Stability of Error Bounds for Convex Constraint Systems in Banach Spaces , 2010, SIAM J. Optim..

[39]  A. D. Ioffe DIRECTIONAL COMPACTNESS, SCALARIZATION AND NONSMOOTH SEMI-FREDHOLM MAPPINGS This research was su , 1997 .

[40]  Frank H. Clarke,et al.  A New Approach to Lagrange Multipliers , 1976, Math. Oper. Res..

[41]  D. Azé,et al.  On the Sensitivity Analysis of Hoffman Constants for Systems of Linear Inequalities , 2002, SIAM J. Optim..

[42]  Wen Song,et al.  Calmness and Error Bounds for Convex Constraint Systems , 2006, SIAM J. Optim..

[43]  F. Clarke Necessary conditions for nonsmooth problems in-optimal control and the calculus of variations , 1991 .

[44]  Stephen M. Robinson,et al.  Normal Maps Induced by Linear Transformations , 1992, Math. Oper. Res..

[45]  A. Hoffman On approximate solutions of systems of linear inequalities , 1952 .

[46]  John McGregor,et al.  Openness , 2007, J. Object Technol..

[47]  B. Dundas,et al.  DIFFERENTIAL TOPOLOGY , 2002 .

[48]  A. Lewis,et al.  Error Bounds for Convex Inequality Systems , 1998 .

[49]  Vlastimil Pták,et al.  A quantitative refinement of the closed graph theorem , 1974 .

[50]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[51]  J. Schauder Über die Umkehrung linearer, stetiger Funktionaloperationen , .

[52]  S. M. Robinson Stability Theory for Systems of Inequalities. Part I: Linear Systems , 1975 .

[53]  Stephen M. Robinson,et al.  An Implicit-Function Theorem for a Class of Nonsmooth Functions , 1991, Math. Oper. Res..

[54]  A. Sard,et al.  The measure of the critical values of differentiable maps , 1942 .

[55]  Corneliu Ursescu,et al.  Linear openness of multifunctions in metric spaces , 2005, Int. J. Math. Math. Sci..

[56]  Vera Zeidan,et al.  Infinite dimensional clarke generalized Jacobian , 2007 .

[57]  J. Warga Controllability and Necessary Conditions in Unilateral Problems without Differentiability Assumptions , 1976 .

[58]  Peter Fusek,et al.  On Metric Regularity for Weakly Almost Piecewise Smooth Functions and Some Applications in Nonlinear Semidefinite Programming , 2013, SIAM J. Optim..

[59]  J. Aubin Contingent Derivatives of Set-Valued Maps and Existence of Solutions to Nonlinear Inclusions and Differential Inclusions. , 1980 .

[60]  D. Russell Luke,et al.  Nonconvex Notions of Regularity and Convergence of Fundamental Algorithms for Feasibility Problems , 2012, SIAM J. Optim..

[61]  A. Kruger About Regularity of Collections of Sets , 2006 .

[62]  J. Penot Metric regularity, openness and Lipschitzian behavior of multifunctions , 1989 .

[64]  F. J. A. Artacho,et al.  Characterization of Metric Regularity of Subdifferentials , 2008 .

[65]  A. Dontchev The Graves Theorem Revisited , 1996 .

[66]  Valeri Obukhovskii,et al.  Locally covering maps in metric spaces and coincidence points , 2009 .

[67]  On Implicit Multifunction Theorems , 2008 .

[68]  Dmitriy Drusvyatskiy,et al.  Quadratic growth and critical point stability of semi-algebraic functions , 2013, Math. Program..

[69]  Yoshiyuki Sekiguchi,et al.  Regularity estimates for convex multifunctions , 2009, Math. Program..

[70]  L. Thibault,et al.  Chain rules for coderivatives of multivalued mappings in Banach spaces , 1998 .

[71]  Jean-Pierre Aubin,et al.  Lipschitz Behavior of Solutions to Convex Minimization Problems , 1984, Math. Oper. Res..

[72]  A. Kruger,et al.  Generalized differentials of nonsmooth functions, and necessary conditions for an extremum , 1985 .

[73]  J. Penot Calculus Without Derivatives , 2012 .

[74]  L. Thibault,et al.  Verifiable conditions for openness and regularity of multivalued mappings in Banach spaces , 1995 .

[75]  Lionel Thibault,et al.  Approximate subdifferential and metric regularity: The finite-dimensional case , 1990, Math. Program..

[76]  Boris S. Mordukhovich,et al.  Applying Metric Regularity to Compute a Condition Measure of a Smoothing Algorithm for Matrix Games , 2010, SIAM J. Optim..

[77]  Yu. S. Ledyaev,et al.  Nonsmooth analysis and control theory , 1998 .

[78]  Alexander D. Ioffe On regularity estimates for mappings between embedded manifolds , 2007 .

[79]  Zsolt Páles,et al.  Inverse and Implicit Function Theorems for Nonsmooth Maps in Banach Spaces , 1997 .

[80]  B. Mordukhovich,et al.  Nonsmooth sequential analysis in Asplund spaces , 1996 .

[81]  B. Mordukhovich Variational analysis and generalized differentiation , 2006 .

[82]  Diethard Klatte,et al.  Optimization methods and stability of inclusions in Banach spaces , 2008, Math. Program..

[83]  Jean-Paul Penot,et al.  Subtraction Theorems and Approximate Openness for Multifunctions: Topological and Infinitesimal Viewpoints☆ , 1998 .

[85]  Heinz H. Bauschke,et al.  On Projection Algorithms for Solving Convex Feasibility Problems , 1996, SIAM Rev..

[86]  F. Clarke,et al.  Topological Geometry: THE INVERSE FUNCTION THEOREM , 1981 .

[87]  Radek Cibulka,et al.  A note on Robinson–Ursescu and Lyusternik–Graves theorem , 2013, Math. Program..

[88]  C. Zălinescu Convex analysis in general vector spaces , 2002 .

[89]  A. Ioffe Metric regularity and subdifferential calculus , 2000 .

[90]  Dmitriy Drusvyatskiy,et al.  Semi-algebraic functions have small subdifferentials , 2010, Math. Program..

[91]  R. Rockafellar,et al.  The radius of metric regularity , 2002 .

[92]  Adrian S. Lewis,et al.  Ill-Conditioned Inclusions , 2001 .

[93]  R. Rockafellar,et al.  Implicit Functions and Solution Mappings , 2009 .

[94]  A. Ioffe Necessary and Sufficient Conditions for a Local Minimum. 3: Second Order Conditions and Augmented Duality , 1979 .

[95]  F. Clarke Generalized gradients and applications , 1975 .

[96]  A. Kruger,et al.  A covering theorem for set-valued mappings , 1988 .

[97]  Marie-Françoise Roy,et al.  Real algebraic geometry , 1992 .

[98]  B. Mordukhovich Complete characterization of openness, metric regularity, and Lipschitzian properties of multifunctions , 1993 .

[99]  M. Fabian,et al.  On primal regularity estimates for single-valued mappings , 2015 .

[100]  Boris S. Mordukhovich,et al.  Variational Analysis in Semi-Infinite and Infinite Programming, I: Stability of Linear Inequality Systems of Feasible Solutions , 2009, SIAM J. Optim..

[101]  Louis Nirenberg,et al.  Topics in Nonlinear Functional Analysis , 2001 .

[102]  J. Borwein,et al.  Verifiable necessary and sufficient conditions for openness and regularity of set-valued and single-valued maps , 1988 .

[103]  J. Penot,et al.  SUBDIFFERENTIALS OF PERFORMANCE FUNCTIONS AND CALCULUS OF CODERIVATIVES OF SET-VALUED MAPPINGS , 1996 .

[104]  J. Aubin Set-valued analysis , 1990 .

[105]  Jean-Noël Corvellec,et al.  Characterizations of error bounds for lower semicontinuous functions on metric spaces , 2004 .

[106]  Helmut Gfrerer,et al.  First Order and Second Order Characterizations of Metric Subregularity and Calmness of Constraint Set Mappings , 2011, SIAM J. Optim..

[107]  Stephen M. Robinson,et al.  Regularity and Stability for Convex Multivalued Functions , 1976, Math. Oper. Res..

[108]  Jonathan M. Borwein,et al.  Norm duality for convex processes and applications , 1986 .

[109]  Richard B. Vinter,et al.  Optimal Control , 2000 .

[110]  A. Ioffe Approximate subdifferentials and applications. I. The finite-dimensional theory , 1984 .

[111]  Dmitriy Drusvyatskiy,et al.  Tilt Stability, Uniform Quadratic Growth, and Strong Metric Regularity of the Subdifferential , 2012, SIAM J. Optim..

[112]  Huynh van Ngai,et al.  Implicit multifunction theorems in complete metric spaces , 2013, Math. Program..

[113]  R. Tyrrell Rockafellar,et al.  Tilt Stability of a Local Minimum , 1998, SIAM J. Optim..

[114]  A. Ioffe Variational analysis and mathematical economics 2: Nonsmooth regular economies , 2011 .

[115]  D. Ralph A new proof of Robinson's homeomorphism theorem for pl-normal maps , 1993 .

[116]  Asen L. Dontchev,et al.  Lyusternik-Graves theorem and fixed points , 2011 .

[117]  Kung Fu Ng,et al.  Error Bounds for Some Convex Functions and Distance Composite Functions , 2005, SIAM J. Optim..

[118]  K. W. Meng,et al.  Equivalent Conditions for Local Error Bounds , 2012 .

[119]  Alexander D. Ioffe,et al.  On Metric and Calmness Qualification Conditions in Subdifferential Calculus , 2008 .

[120]  D. Azé,et al.  A Unified Theory for Metric Regularity of Multifunctions , 2006 .

[121]  Adrian S. Lewis,et al.  Local Linear Convergence for Alternating and Averaged Nonconvex Projections , 2009, Found. Comput. Math..

[122]  S. M. Robinson Normed convex processes , 1972 .

[123]  A. Ioffe Polyhedrality,Complementarity and Regularity with Applications to Variational Inequalities over Polyhedral Sets , 2015, 1508.06607.

[124]  E. De Giorgi,et al.  PROBLEMI DI EVOLUZIONE IN SPAZI METRICI , 1980 .

[125]  V. Tikhomirov,et al.  Fundamental principles of the theory of extremal problems , 1986 .

[126]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[127]  A. Ioffe,et al.  On the local surjection property , 1987 .

[128]  A. Ioffe Variational methods in local and global non-smooth analysis , 1999 .

[129]  A. Ioffe Critical values of set-valued maps with stratifiable graphs. Extensions of Sard and Smale-Sard theorems , 2008 .

[130]  Andrei Dmitruk,et al.  LYUSTERNIK'S THEOREM AND THE THEORY OF EXTREMA , 1980 .

[131]  Georges Comte,et al.  Tame Geometry with Application in Smooth Analysis , 2004, Lecture notes in mathematics.

[132]  F. J. A. Artacho,et al.  Metric subregularity of the convex subdifferential in Banach spaces , 2013, 1303.3654.

[133]  L. Hörmander Sur la fonction d’appui des ensembles convexes dans un espace localement convexe , 1955 .

[134]  Aris Daniilidis,et al.  Sard theorems for Lipschitz functions and applications in optimization , 2016 .

[135]  S. Banach,et al.  Théorie des opérations linéaires , 1932 .

[136]  Wu Li,et al.  Asymptotic constraint qualifications and global error bounds for convex inequalities , 1999, Math. Program..