An Adaptive Mesh-Refining Algorithm Allowing for an H1 Stable L2 Projection onto Courant Finite Element Spaces

Abstract Suppose $\cal{S}^1({\cal T})\subset H^1(\Omega)$ is the $P_1$-finite element space of $\cal{T}$-piecewise affine functions based on a regular triangulation $\cal{T}$ of a two-dimensional surface $\Omega$ into triangles. The $L^2$ projection $\Pi$ onto $\cal{S}^1(\cal{T})$ is $H^1$ stable if $\norm{\Pi v}{H^1(\Omega)}\le C\norm{v}{H^1(\Omega)}$ for all $v$ in the Sobolev space $H^1(\Omega)$ and if the bound $C$ does not depend on the mesh-size in $\cal{T}$ or on the dimension of $\cal{S}^1(\cal{T})$. \hskip 1em A red–green–blue refining adaptive algorithm is designed which refines a coarse mesh $\cal{T}_0$ successively such that each triangle is divided into one, two, three, or four subtriangles. This is the newest vertex bisection supplemented with possible red refinements based on a careful initialization. The resulting finite element space allows for an $H^1$ stable $L^2$ projection. The stability bound $C$ depends only on the coarse mesh $\cal{T}_0$ through the number of unknowns, the shapes of the triangles in $\cal{T}_0$, and possible Dirichlet boundary conditions. Our arguments also provide a discrete version $\norm{h_\cal{T}^{-1}\,\Pi v}{L^2(\Omega)}\le C\norm{h_\cal{T}^{-1}\,v}{L^2(\Omega)}$ in $L^2$ norms weighted with the mesh-size $h_\T$.

[1]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[2]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[3]  Eberhard Bänsch,et al.  Local mesh refinement in 2 and 3 dimensions , 1991, IMPACT Comput. Sci. Eng..

[4]  Olaf Steinbach,et al.  On the stability of the $L_2$ projection in fractional Sobolev spaces , 2001, Numerische Mathematik.

[5]  Joseph M. Maubach,et al.  Local bisection refinement for $n$-simplicial grids generated by reflection , 2017 .

[6]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[7]  Douglas N. Arnold,et al.  Locally Adapted Tetrahedral Meshes Using Bisection , 2000, SIAM Journal on Scientific Computing.

[8]  William F. Mitchell,et al.  A comparison of adaptive refinement techniques for elliptic problems , 1989, TOMS.

[9]  C. Carstensen QUASI-INTERPOLATION AND A POSTERIORI ERROR ANALYSIS IN FINITE ELEMENT METHODS , 1999 .

[10]  Joseph E. Pasciak,et al.  On the stability of the L2 projection in H1(Omega) , 2002, Math. Comput..

[11]  Carsten Carstensen,et al.  Merging the Bramble-Pasciak-Steinbach and the Crouzeix-Thomée criterion for H1-stability of the L2-projection onto finite element spaces , 2002, Math. Comput..

[12]  M. Rivara Algorithms for refining triangular grids suitable for adaptive and multigrid techniques , 1984 .

[13]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[14]  V. Thomée,et al.  The stability in _{} and ¹_{} of the ₂-projection onto finite element function spaces , 1987 .