Theoretical study on effect of confinement on flexural ductility of normal and high-strength concrete beams

Compared with normal concrete, high-strength concrete has higher strength but is generally more brittle. Its use in a reinforced concrete structure, if not properly controlled, could lead to an unsustainable reduction in ductility. However, confinement could be provided to improve the ductility of the structure. In this study, the effects of concrete strength and confinement on the flexural ductility of reinforced concrete beams have been evaluated by means of complete moment–curvature analysis of beam sections cast in different concretes and provided with different confinements. The results reveal that the use of high-strength concrete at a constant tension steel ratio would increase the flexural ductility, but at a constant tension to balanced steel ratio would decrease the flexural ductility. In contrast, the provision of confinement would always increase the flexural ductility. It does this in two ways: first, it increases the balanced steel ratio so that, at the same tension steel ratio, the tension ...