Developing spatially and thematically detailed backdated maps for land cover studies

ABSTRACT Global or regional land cover change on a decadal time scale can be studied at a high level of detail using the availability of remote sensing data such as that provided by Landsat. However, there are three main technical challenges in this goal. First, the generation of land cover maps without reference data is problematic (backdating). Second, it is important to maintain high accuracies in land cover change map products, requiring a reasonably rich legend within each map. Third, a high level of automation is necessary to aid the management of large volumes of data. This paper describes a robust methodology for processing time series of satellite data over large spatial areas. The methodology includes a retrospective analysis used for the generation of training and test data for historical periods lacking reference information. This methodology was developed in the context of research on global change in the Iberian Peninsula. In this study we selected two scenes covering geographic regions that are representative of the Iberian Peninsula. For each scene, we present the results of two classifications (1985–1989 and 2000–2004 quinquennia), each with a legend of 13 categories. An overall accuracy of over 92% was obtained for all 4 maps.

[1]  Damien Sulla-Menashe,et al.  A parametric model for classifying land cover and evaluating training data based on multi-temporal remote sensing data , 2014 .

[2]  A. Huete A soil-adjusted vegetation index (SAVI) , 1988 .

[3]  F. Baret,et al.  Potentials and limits of vegetation indices for LAI and APAR assessment , 1991 .

[4]  Chengquan Huang,et al.  Global characterization and monitoring of forest cover using Landsat data: opportunities and challenges , 2012, Int. J. Digit. Earth.

[5]  Christelle Vancutsem,et al.  GlobCover: ESA service for global land cover from MERIS , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[6]  C. Woodcock,et al.  Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation , 2013 .

[7]  Huadong Guo,et al.  Digital Earth 2020: towards the vision for the next decade , 2012, Int. J. Digit. Earth.

[8]  Zhe Zhu,et al.  Object-based cloud and cloud shadow detection in Landsat imagery , 2012 .

[9]  J. Fry,et al.  Updating the 2001 National Land Cover Database land cover classification to 2006 by using Landsat imagery change detection methods , 2009 .

[10]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[11]  M. Ninyerola,et al.  Mapping a topographic global solar radiation model implemented in a GIS and refined with ground data , 2008 .

[12]  Inocencio Font Tullot Climatología de España y Portugal , 1983 .

[13]  Miquel Ninyerola,et al.  Distribución espacial de la incertidumbre en mapas de cubiertas obtenidos mediante teledetección , 2014 .

[14]  Peijun Li,et al.  Land cover classification using CHRIS/PROBA images and multi-temporal texture , 2012 .

[15]  D. Toll An evaluation of simulated Thematic Mapper data and Landsat MSS data for discriminating suburban and regional land use and land cover , 1984 .

[16]  J. Palutikof,et al.  Climate change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policymakers. , 2007 .

[17]  Suming Jin,et al.  A comprehensive change detection method for updating the National Land Cover Database to circa 2011 , 2013 .

[18]  Chengquan Huang,et al.  Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error , 2013, Int. J. Digit. Earth.

[19]  A. Strahler MODIS Land Cover Product Algorithm Theoretical Basis Document (ATBD) Version 5.0 , 1994 .

[20]  J. Dozier Spectral Signature of Alpine Snow Cover from the Landsat Thematic Mapper , 1989 .

[21]  X. Roijals Lara,et al.  DIFERENCIACIÓN DE CUBIERTAS FORESTALES PARA EL MCSC A PARTIR DE LA CLASIFICACIÓN DE IMÁGENES LANDSAT , 2005 .

[22]  C. Justice,et al.  High-Resolution Global Maps of 21st-Century Forest Cover Change , 2013, Science.

[23]  Huadong Guo Digital Earth and Future Earth , 2016, Int. J. Digit. Earth.

[24]  C. Woodcock,et al.  Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images , 2015 .

[25]  Xavier Pons,et al.  Automatic and improved radiometric correction of Landsat imagery using reference values from MODIS surface reflectance images , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[26]  Miquel Ninyerola,et al.  Landscape dynamics of Abies and Fagus in the southern Pyrenees during the last 2200 years as a result of anthropogenic impacts. , 2009 .

[27]  D. Sheil,et al.  Four Decades of Forest Persistence, Clearance and Logging on Borneo , 2014, PloS one.

[28]  Guo Huadong,et al.  Digital Earth and Future Earth , 2016 .

[29]  E. Doblas-Miranda,et al.  Land-cover change effects on trophic interactions: Current knowledge and future challenges in research and conservation , 2013 .

[30]  D. Hall,et al.  Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data , 1995 .

[31]  G. Chander,et al.  Assessment of the NASA–USGS Global Land Survey (GLS) datasets , 2013 .

[32]  Michael A. Wulder,et al.  Landsat continuity: Issues and opportunities for land cover monitoring , 2008 .

[33]  Damien Sulla-Menashe,et al.  MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets , 2010 .

[34]  G. Bonan Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests , 2008, Science.

[35]  Jin Chen,et al.  Global land cover mapping at 30 m resolution: A POK-based operational approach , 2015 .

[36]  Jams L. Cushnie The interactive effect of spatial resolution and degree of internal variability within land-cover types on classification accuracies , 1987 .

[37]  Limin Yang,et al.  Development of a 2001 National land-cover database for the United States , 2004 .

[38]  Collin G. Homer,et al.  Effects of Land Cover and Regional Climate Variations on Long-Term Spatiotemporal Changes in Sagebrush Ecosystems , 2012 .

[39]  Limin Yang,et al.  COMPLETION OF THE 1990S NATIONAL LAND COVER DATA SET FOR THE CONTERMINOUS UNITED STATES FROM LANDSAT THEMATIC MAPPER DATA AND ANCILLARY DATA SOURCES , 2001 .

[40]  José María García Ruiz Geoecología de las áreas de montaña , 1990 .

[41]  F. J. Kriegler,et al.  Preprocessing Transformations and Their Effects on Multispectral Recognition , 1969 .

[42]  Xavier Pons,et al.  Post-classification change detection with data from different sensors: Some accuracy considerations , 2003 .

[43]  D. Lu,et al.  Use of impervious surface in urban land-use classification , 2006 .

[44]  J. Vogelmann,et al.  Regional Land Cover Characterization Using Landsat Thematic Mapper Data and Ancillary Data Sources , 1998 .

[45]  Helen M. Regan,et al.  Effects of climate change and urban development on the distribution and conservation of vegetation in a Mediterranean type ecosystem , 2014, Int. J. Geogr. Inf. Sci..

[46]  Xavier Pons,et al.  Two Mediterranean irrigation communities in front of water scarcity: A comparison using satellite image time series , 2013 .

[47]  Antonio Gil Olcina,et al.  Geografía de España , 2001 .

[48]  Y. Ouma,et al.  A water index for rapid mapping of shoreline changes of five East African Rift Valley lakes: an empirical analysis using Landsat TM and ETM+ data , 2006 .

[49]  E. Salinero,et al.  Fundamentos de teledetección espacial , 1990 .

[50]  Chih-Jen Lin,et al.  A Practical Guide to Support Vector Classication , 2008 .

[51]  Xavier Pons,et al.  Anàlisi dels usos del sòl de la plana de l'Alt Empordà i la seva localització a través de la teledetecció : (1977-1993) , 2000 .

[52]  Thierry Onkelinx,et al.  Terrestrial habitat mapping in Europe: an overview , 2014 .

[53]  J. Wickham,et al.  Thematic accuracy of the NLCD 2001 land cover for the conterminous United States , 2010 .

[54]  Xavier Pons,et al.  Improvements on Classification by Tolerating NoData Values - Application to a Hybrid Classifier to Discriminate Mediterranean Vegetation with a Detailed Legend Using Multitemporal Series of Images , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[55]  Conghe Song,et al.  Long-term land cover dynamics by multi-temporal classification across the Landsat-5 record , 2013 .

[56]  C. Heunks,et al.  Land cover characterization and change detection for environmental monitoring of pan-Europe , 2000 .

[57]  Carsten Brockmann,et al.  CCI Land Cover Pre-processing. Challenges of pre-processing for Land Cover classification , 2013 .