Dissolution dynamics of woven all-silk composites fabricated in the ionic liquid 1-ethyl-3-methylimidazolium acetate

[1]  W. Peter,et al.  Recycling of natural fiber composites: Challenges and opportunities , 2022, Resources, Conservation and Recycling.

[2]  I. Verpoest,et al.  Ductile woven silk fibre thermoplastic composites with quasi-isotropic strength , 2021 .

[3]  P. Hine,et al.  Time-Temperature Superposition of the Dissolution of Silk Fibers in the Ionic Liquid 1-Ethyl-3-methylimidazolium Acetate. , 2021, Biomacromolecules.

[4]  P. Hine,et al.  Time Temperature Superposition of the Dissolution of Cellulose Fibres by the Ionic Liquid 1-ethyl-3-methylimidazolium acetate with cosolvent Dimethyl Sulfoxide , 2020 .

[5]  P. Hine,et al.  Dissolution of cotton by 1-ethyl-3-methylimidazolium acetate studied with time–temperature superposition for three different fibre arrangements , 2020, Cellulose.

[6]  Yu-Qing Zhang,et al.  Dissolution and regeneration of silk from silkworm Bombyx mori in ionic liquids and its application to medical biomaterials. , 2019, International journal of biological macromolecules.

[7]  Suchart Siengchin,et al.  Natural Fibers as Sustainable and Renewable Resource for Development of Eco-Friendly Composites: A Comprehensive Review , 2019, Front. Mater..

[8]  Elastic Deformation of Long Fibre Composites , 2019, An Introduction to Composite Materials.

[9]  Y. Liu,et al.  Thermal analysis and kinetic study of native silks , 2019, Journal of Thermal Analysis and Calorimetry.

[10]  F. Wang,et al.  Comparative studies of structure, thermal decomposition mechanism and thermodynamic parameters of two kinds of silk fibroin films , 2019, SCIENTIA SINICA Chimica.

[11]  M. Leite,et al.  Natural Fibre Composites and Their Applications: A Review , 2018, Journal of Composites Science.

[12]  C. Holland,et al.  Thermo-rheological behaviour of native silk feedstocks , 2017 .

[13]  K. Pickering,et al.  A review of recent developments in natural fibre composites and their mechanical performance , 2016 .

[14]  Keita Ito,et al.  Silk fibroin as biomaterial for bone tissue engineering. , 2016, Acta biomaterialia.

[15]  M. Motavalli,et al.  Effect of Chemical Treatment of Flax Fiber and Resin Manipulation on Service Life of Their Composites Using Time-Temperature Superposition , 2015 .

[16]  Xiangping Zhang,et al.  Highly Efficient Dissolution of Wool Keratin by Dimethylphosphate Ionic Liquids , 2015 .

[17]  D. Porter,et al.  Can silk become an effective reinforcing fibre? A property comparison with flax and glass reinforced composites , 2014 .

[18]  Fritz Vollrath,et al.  Opportunities for silk textiles in reinforced biocomposites: Studying through-thickness compaction behaviour , 2014 .

[19]  A. W. Dzuraidah,et al.  Bombyx mori silk fibre and its composite: A review of contemporary developments , 2014 .

[20]  D. Shah Developing plant fibre composites for structural applications by optimising composite parameters: a critical review , 2013, Journal of Materials Science.

[21]  Xiaowen Yuan,et al.  Improving the mechanical properties of natural fibre fabric reinforced epoxy composites by alkali treatment , 2012 .

[22]  J. Dupont From molten salts to ionic liquids: a "nano" journey. , 2011, Accounts of chemical research.

[23]  Zhiyang Zhang,et al.  Cation/anion associations in ionic liquids modulated by hydration and ionic medium. , 2011, The journal of physical chemistry. B.

[24]  Jinrong Yao,et al.  The preparation of high performance silk fiber/fibroin composite , 2010 .

[25]  J. Hermans,et al.  Quantitative evaluation of orientation in cellulose fibres from the X‐ray fibre diagram , 2010 .

[26]  M. Beg,et al.  Effect of matrix modification by natural rubber on the performance of silk-reinforced polypropylene composites , 2010 .

[27]  C. Hill,et al.  Silane coupling agents used for natural fiber/polymer composites: A review , 2010 .

[28]  N. Sun,et al.  Dissolution or extraction of crustacean shells using ionic liquids to obtain high molecular weight purified chitin and direct production of chitin films and fibers , 2010 .

[29]  Thomas Scheibel,et al.  Polymeric materials based on silk proteins , 2008 .

[30]  A. M. Bochek,et al.  Structure and solubility of natural silk fibroin , 2006 .

[31]  R. Naik,et al.  Dissolution and regeneration of Bombyx mori silk fibroin using ionic liquids. , 2004, Journal of the American Chemical Society.

[32]  I. Um,et al.  Wet spinning of silk polymer. I. Effect of coagulation conditions on the morphological feature of filament. , 2004, International journal of biological macromolecules.

[33]  Robin D. Rogers,et al.  Dissolution of Cellose with Ionic Liquids , 2002 .

[34]  Fumio Arisaka,et al.  Silk Fibroin of Bombyx mori Is Secreted, Assembling a High Molecular Mass Elementary Unit Consisting of H-chain, L-chain, and P25, with a 6:6:1 Molar Ratio* , 2000, The Journal of Biological Chemistry.

[35]  J. Warwicker The crystal structure of silk fibroin , 1954 .

[36]  Yehia E. Elmogahzy,et al.  Finished fibrous assemblies , 2020 .

[37]  Robin D. Rogers,et al.  Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride , 2007 .

[38]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .

[39]  W. Voigt Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper , 1889 .