Robust control design for a class of mismatched uncertain nonlinear systems

We consider the robust control design problem for a class of nonlinear uncertain systems. The uncertainty in the system may be due to parameter variations and/or nonlinearity. It may be possibly fast, time-varying. The system does not satisfy the so-called matching condition. Under a state transformation, which is based on the possible bound of the uncertainty, a robust control scheme can be designed. The control renders the original uncertain system practically stable. Furthermore, the uniform ultimate boundedness ball and uniform stability ball of the original system can be made arbitrarily small by suitable choice of design parameters.

[1]  Ye-Hwa Chen,et al.  Robust control design for uncertain flexible-joint manipulators: a singular perturbation approach , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[2]  Y.H. Chen,et al.  A New Matching Condition for Robust Control Design , 1993, 1993 American Control Conference.

[3]  Zhihua Qu,et al.  Robust Control of Nonlinear Uncertain Systems Under Generalized Matching Conditions , 1993, 1993 American Control Conference.

[4]  Y. H. Chen,et al.  Robust control design for a two-compartment drug administration model , 1992 .

[5]  Ye-Hwa Chen,et al.  Robust control of nonlinear uncertain systems: a feedback linearization approach , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[6]  B. Barmish,et al.  On guaranteed stability of uncertain linear systems via linear control , 1981 .

[7]  Y. H. Chen,et al.  Design of robust controllers for uncertain dynamical systems , 1988 .

[8]  Petar V. Kokotovic,et al.  Design of 'softer' robust nonlinear control laws , 1993, Autom..

[9]  I. Kanellakopoulos,et al.  A new generation of adaptive controllers for linear systems , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[10]  M. Corless Control of Uncertain Nonlinear Systems , 1993 .

[11]  Ian R. Petersen,et al.  A Necessary and Sufficient Condition for Quadratic Finite Time Feedback Controllability , 1992 .

[12]  M. Corless,et al.  A new class of stabilizing controllers for uncertain dynamical systems , 1982, 1982 21st IEEE Conference on Decision and Control.

[13]  Ian R. Petersen,et al.  A riccati equation approach to the stabilization of uncertain linear systems , 1986, Autom..

[14]  P.V. Kokotović,et al.  ON LETTING ADAPTIVE CONTROL BE WHAT IT IS: NONLINEAR FEEDBACK1 , 1993 .

[15]  G. Leitmann,et al.  Robustness of uncertain systems in the absence of matching assumptions , 1987 .

[16]  G. Leitmann,et al.  On optimal long-term management of some ecological systems subject to uncertain disturbances† , 1983 .

[17]  Martin Corless,et al.  On the necessity of the matching condition in robust stabilization , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[18]  George Leitmann,et al.  A drug administration problem , 1991 .

[19]  Riccardo Marino,et al.  Nonlinear control techniques for flexible joint manipulators: A single link case study , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[20]  G. Leitmann On the Efficacy of Nonlinear Control in Uncertain Linear Systems , 1981 .

[21]  Riccardo Marino,et al.  Robust stabilization of feedback linearizable time-varying uncertain nonlinear systems, , 1993, Autom..

[22]  Miroslav Krstic,et al.  ON LETTING ADAPTIVE CONTROL BE WHAT IT IS: NONLINEAR FEEDBACK , 1992 .

[23]  P. Kokotovic,et al.  Adaptive nonlinear control with nonlinear swapping , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[24]  Miroslav Krstic,et al.  /spl kappa/-adaptive control of output-feedback nonlinear systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[25]  B. Barmish Necessary and sufficient conditions for quadratic stabilizability of an uncertain system , 1985 .

[26]  George Leitmann,et al.  On ultimate boundedness control of uncertain systems in the absence of matching assumptions , 1982 .

[27]  J. Hale,et al.  Ordinary Differential Equations , 2019, Fundamentals of Numerical Mathematics for Physicists and Engineers.

[28]  G. Leitmann On One Approach to the Control of Uncertain Systems , 1993 .

[29]  M. Corless,et al.  Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems , 1981 .

[30]  Y. H. Chen,et al.  On the Robustness of Mismatched Uncertain Dynamical Systems , 1987 .

[31]  Y. Chen A new matching condition for nonlinear robust control design , 1995 .

[32]  Antonio Augusto Rodrigues Coelho,et al.  Ultimate boundedness control of set points of mismatched uncertain linear systems , 1983 .

[33]  James M. Kelly,et al.  Robust control of base-isolated structures under earthquake excitation , 1987 .

[34]  Mohamed A. Zohdy,et al.  Quadratic stabilizability of uncertain systems : A two level optimization setup , 1991, Autom..

[35]  H. Stalford,et al.  On the robustness of linear stabilizing feedback control for linear uncertain systems: Multi-input case , 1990, 1988 American Control Conference.