An Energy-dependent Electro-thermal Response Model of CUORE Cryogenic Calorimeter

: The Cryogenic Underground Observatory for Rare Events (CUORE) is the most sensitive experiment searching for neutrinoless double-beta decay (0 𝜈𝛽𝛽 ) in 130 Te. CUORE uses a cryogenic array of 988 TeO 2 calorimeters operated at ∼ 10 mK with a total mass of 741 kg. To further increase the sensitivity, the detector response must be well understood. Here, we present a non-linear thermal model for the CUORE experiment on a detector-by-detector basis. We have examined both equilibrium and dynamic electro-thermal models of detectors by numerically fitting non-linear differential equations to the detector data of a subset of CUORE channels which are well characterized and representative of all channels. We demonstrate that the hot-electron effect and electric-field dependence of resistance in NTD-Ge thermistors alone are inadequate to describe our detectors’ energy dependent pulse shapes. We introduce an empirical second-order correction factor in the exponential temperature dependence of the thermistor, which produces excellent agreement with energy-dependent pulse shape data up to 6 MeV. We also present a noise analysis using the fitted thermal parameters and show that the intrinsic thermal noise is negligible compared to the observed noise for our detectors.

P. T. Surukuchi | C. Pagliarone | K. Han | R. Maruyama | I. Dafinei | M. Pallavicini | J. Camilleri | L. Winslow | C. Rosenfeld | M. Clemenza | F. Ferroni | S. Freedman | S. Domizio | P. Carniti | C. Gotti | E. Norman | K. Heeger | G. Bari | Andrea Giachero | Y. Ma | E. Fiorini | F. Avignone | B. Fujikawa | G. Benato | G. Pessina | J. Nikkel | F. Terranova | Y. Kolomensky | F. Bellini | S. Capelli | O. Azzolini | C. Pira | M. Olmi | V. Sharma | T. O'donnell | D. Chiesa | M. Sisti | M. Franceschi | M. Biassoni | A. Caminata | M. Beretta | M. Nastasi | S. Pozzi | E. Previtali | T. Napolitano | L. Cardani | N. Casali | C. Tomei | M. Vignati | D. Speller | B. Welliver | S. Dell’Oro | C. Bucci | A. Nucciotti | C. Brofferio | M. Faverzani | E. Ferri | A. Puiu | E. Hansen | T. Gutierrez | A. Giuliani | M. Pavan | S. Pirrò | L. Marini | S. Sangiorgio | D. Fang | L. Canonica | P. Gorla | C. Nones | O. Cremonesi | R. Creswick | N. Scielzo | L. Gironi | L. Pattavina | L. Taffarello | Y. Mei | G. Keppel | B. Wang | V. Pettinacci | X. Cao | C. Ligi | C. Alduino | L. Cappelli | S. Copello | A. D’Addabbo | J. Ouellet | L. Pagnanini | K. Alfonso | B. Schmidt | S. Wagaarachchi | I. Nutini | C. C. D. Q. Adams | A. Campani | E. Celi | V. Dompè | G. Fantini | S. Fu | R. Huang | J. Johnston | D. Mayer | S. Pagan | K. Vetter | S. D. Lorenzo | S. Ghislandi | S. Zucchelli | I. Ponce | S. Morganti | H. Huang | A. Branca | L. Ma | A. Ressa | V. Singh | J. Wilson | K. Wilson | R. Liu | C. Capelli | F. D. Corso | A. Gianvecchio | R. Kowalski | M. Li | S. Quitadamo | S. Zimmermann

[1]  P. T. Surukuchi,et al.  Search for Majorana neutrinos exploiting millikelvin cryogenics with CUORE , 2021, Nature.

[2]  S. Domizio,et al.  A highly automated system to define the best operating settings of cryogenic calorimeters , 2020 .

[3]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[4]  A. Poon,et al.  Neutrinoless Double-Beta Decay: Status and Prospects , 2019, Annual Review of Nuclear and Particle Science.

[5]  X. Liu,et al.  A front-end electronic system for large arrays of bolometers , 2017, 1710.06365.

[6]  S. Domizio,et al.  An active noise cancellation technique for the CUORE Pulse Tube cryocoolers , 2017, Cryogenics.

[7]  María Martínez Status of CUORE: an observatory for neutrinoless double beta decay and other rare events , 2017 .

[8]  F. Šimkovic,et al.  Neutrinoless double beta decay and neutrino mass , 2016, 1612.02924.

[9]  A. Giachero,et al.  CUORE-0 detector: design, construction and operation , 2016, Journal of Instrumentation.

[10]  J. Ouellet The Search for Neutrinoless Double Beta Decay with 130Te with CUORE-0 , 2015 .

[11]  R. G. Pillay,et al.  Specific heat of Teflon, Torlon 4203 and Torlon 4301 in the range of 30-400 mK. , 2015 .

[12]  L. Gironi Pulse Shape Analysis with Scintillating Bolometers , 2011, 1111.6022.

[13]  M. Vignati,et al.  Signal and noise simulation of CUORE bolometric detectors , 2011, 1106.3902.

[14]  V. Marco Model of the Response Function of CUORE Bolometers , 2011 .

[15]  C. Rusconi OPTIMISATION OF THE BOLOMETRIC PERFORMANCES OF THE CUORE-0/CUORE AND LUCIFER DETECTORS FOR THE NEUTRINOLESS DOUBLE BETA DECAY SEARCH , 2011 .

[16]  Massimiliano Clemenza,et al.  The low radioactivity link of the CUORE experiment , 2009 .

[17]  Guglielmo Ventura,et al.  The Art of Cryogenics: Low-Temperature Experimental Techniques , 2007 .

[18]  J. Beeman,et al.  Excess Heat Capacity in NTD Ge Thermistors , 2006 .

[19]  Enectali Figueroa-Feliciano,et al.  Complex microcalorimeter models and their application to position-sensitive detectors , 2006 .

[20]  Dan McCammon,et al.  Thermal Equilibrium Calorimeters -- An Introduction , 2005, physics/0503045.

[21]  D. McCammon,et al.  Microcalorimeter and bolometer model , 2003, astro-ph/0304397.

[22]  J. Beeman,et al.  Modelling and Optimizing of High Sensitivity Semiconducting Thermistors at Low Temperature , 2001 .

[23]  Maura Pavan,et al.  Low frequency noise characterization of very large value resistors , 2001 .

[24]  M. Barucci,et al.  Measurement of Low Temperature Specific Heat of Crystalline TeO2 for the Optimization of Bolometric Detectors , 2001 .

[25]  Ezio Previtali,et al.  Vibrational and thermal noise reduction for cryogenic detectors , 2000 .

[26]  Y. Giraud-Héraud,et al.  Hot Electrons Effect in a #23 NTD Ge Sample , 1998 .

[27]  Samuel Harvey Moseley,et al.  NON-OHMIC EFFECTS IN HOPPING CONDUCTION IN DOPED SILICON AND GERMANIUM BETWEEN 0.05 AND 1 K , 1998 .

[28]  Steven R. Elliott,et al.  Double Beta Decay , 2011, 1110.6159.

[29]  Andrew E. Lange,et al.  Measurement of electron-phonon decoupling time in neutron-transmutation doped germanium at 20 mK , 1993 .

[30]  D. Camin,et al.  An electrothermal model for large mass bolometric detectors , 1992, IEEE Conference on Nuclear Science Symposium and Medical Imaging.

[31]  Haller,et al.  Electrical and thermal properties of neutron-transmutation-doped Ge at 20 mK. , 1990, Physical review. B, Condensed matter.

[32]  Park,et al.  Bias-induced nonlinearities in the dc I-V characteristics of neutron-transmutation-doped germanium at liquid-4He temperatures. , 1989, Physical review. B, Condensed matter.

[33]  M. Fukugita,et al.  Baryogenesis without grand unification , 1986 .

[34]  J. Mather,et al.  Electrical self-calibration of nonideal bolometers. , 1984, Applied optics.

[35]  J. Mather,et al.  Bolometers: ultimate sensitivity, optimization, and amplifier coupling. , 1984, Applied optics.

[36]  Eugene E. Haller,et al.  NTD germanium: A novel material for low-temperature bolometers , 1984 .

[37]  J. Mather Bolometer noise: nonequilibrium theory. , 1982, Applied optics.

[38]  Boris I Shklovskii,et al.  Coulomb gap and low temperature conductivity of disordered systems , 1975 .

[39]  Robert M. Hill,et al.  Hopping conduction in amorphous solids , 1971 .

[40]  佐藤 久直 Hot Electrons(低温) , 1959 .

[41]  G. Seidel,et al.  Specific Heat of Germanium and Silicon at Low Temperatures , 1959 .

[42]  R. Jones,et al.  The General Theory of Bolometer Performance , 1953 .