Hermite-Gaussian functions for image synthesis

The advent of high fidelity observatory interferometers such ALMA, invites new opportunities in algorithmic research for image processing. Interferometer telescopes perform irregular sampling on the Fourier transform of the sky images called "visibilities." The inverse problem resolution is called "Image Synthesis". This inverse problem is "Ill-posed" and thus regularization technique should be applied. State-of-the-art image synthesis algorithm (e.g. CLEAN) do provide an inversion of data in Fourier space to produce sky images. Current algorithm are based on spatial regular grid for image processing requiring interpolation for estimating values on grid from values on arbitrary sampling points. Numeric implementation also considers a set of basis function for representing 2-d field. We propose to use a non-local representation for the inverse problem. Our method is based on Hermite-Gaussian (HG) functions. HG functions are a complete set of eigenvectors for the Fourier operator, which we use for representing the problem. The HG set also approximately diagonalize the image's expansion coefficient correlation matrix. We present a proof of concept expressed on images.

[1]  Yihong Gong,et al.  Linear spatial pyramid matching using sparse coding for image classification , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[2]  Cagatay Candan,et al.  The discrete fractional Fourier transform , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[3]  K. Golap,et al.  CASA Architecture and Applications , 2007 .

[4]  Dimitri Mawet,et al.  Flows of gas through a protoplanetary gap , 2013, Nature.

[5]  Jean-Philippe Thiran,et al.  Sparsity Averaging for Compressive Imaging , 2012, IEEE Signal Processing Letters.

[6]  Eero P. Simoncelli 4.7 – Statistical Modeling of Photographic Images , 2005 .

[7]  Clara Fannjiang,et al.  Optimal arrays for compressed sensing in snapshot-mode radio interferometry , 2013, 1512.06185.

[8]  T. Cornwell,et al.  A simple maximum entropy deconvolution algorithm , 1985 .

[9]  Blythe G. Clark Coherence in Radio Astronomy , 1989 .

[10]  Jean-Luc Starck,et al.  Image reconstruction by the wavelet transform applied to aperture synthesis , 1994 .

[11]  Abdelkader Intissar,et al.  Spectral properties of the Cauchy transform on L2(C,e−|z|2λ(z)) , 2006 .

[12]  Erkki Oja,et al.  Image Feature Extraction and Denoising by Sparse Coding , 1999, Pattern Analysis & Applications.

[13]  E. Candès,et al.  Sparsity and incoherence in compressive sampling , 2006, math/0611957.

[14]  Levent Onural,et al.  Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms , 1994 .

[15]  Simón Casassus Montero Flows of gas through a protoplanetary gap , 2013 .

[16]  Pierre Maréchal,et al.  Fourier synthesis via partially finite convex programming , 2009, Math. Comput. Model..

[17]  Kerstin Vogler,et al.  Table Of Integrals Series And Products , 2016 .

[18]  Weidong Chen,et al.  The ill-posedness of the sampling problem and regularized sampling algorithm , 2011, Digit. Signal Process..

[19]  A. Ghanmi Operational formulae for the complex Hermite polynomials Hp, q(z, z¯) , 2013 .

[20]  C. Carilli,et al.  Synthesis Imaging in Radio Astronomy II , 1999 .

[21]  Balu Santhanam,et al.  On discrete Gauss-Hermite functions and eigenvectors of the discrete Fourier transform , 2008, Signal Process..

[22]  T. Cornwell,et al.  A multi-scale multi-frequency deconvolution algorithm for synthesis imaging in radio interferometry , 2011, 1106.2745.

[23]  Jean-Bernard Martens,et al.  Image representation and compression with steered Hermite transforms , 1997, Signal Process..

[24]  Levent Onural,et al.  Optimal filtering in fractional Fourier domains , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[25]  D. L. Donoho,et al.  Compressed sensing , 2006, IEEE Trans. Inf. Theory.

[26]  J. Cadzow Maximum Entropy Spectral Analysis , 2006 .

[27]  Allal Ghanmi,et al.  A class of generalized complex Hermite polynomials , 2008 .

[28]  M. Meneghetti,et al.  Reliable shapelet image analysis , 2006, astro-ph/0608369.

[29]  Gregory S. Chirikjian,et al.  Accurate Image Rotation Using Hermite Expansions , 2009, IEEE Transactions on Image Processing.

[30]  Eric Anterrieu,et al.  CLEAN and WIPE , 1997 .

[31]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[32]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[33]  S. Gull,et al.  Image reconstruction from incomplete and noisy data , 1978, Nature.

[34]  Edmund C. Sutton,et al.  Optimal Image Reconstruction in Radio Interferometry , 2006, astro-ph/0604331.

[35]  B. G. Clark,et al.  An efficient implementation of the algorithm 'CLEAN' , 1980 .

[36]  Tao Tang,et al.  The Hermite Spectral Method for Gaussian-Type Functions , 1993, SIAM J. Sci. Comput..

[37]  P. Lennie The Cost of Cortical Computation , 2003, Current Biology.

[38]  Peter Bühlmann Regression shrinkage and selection via the Lasso: a retrospective (Robert Tibshirani): Comments on the presentation , 2011 .

[39]  Francois Bonnarel,et al.  Entropy and astronomical data analysis: Perspectives from multiresolution analysis , 2001 .

[40]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[41]  R. Tibshirani,et al.  Regression shrinkage and selection via the lasso: a retrospective , 2011 .

[42]  John P. Boyd,et al.  Asymptotic coefficients of hermite function series , 1984 .

[43]  Gregory S. Chirikjian,et al.  A fast Hermite transform , 2008, Theor. Comput. Sci..

[44]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[45]  Benjamin D. Wandelt,et al.  Probabilistic image reconstruction for radio interferometers , 2013, 2014 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM).

[46]  J. Boyd The rate of convergence of Hermite function series , 1980 .

[47]  A. Vinogradov,et al.  Stochastic Equations through the Eye of the Physicist: Basic Concepts, Exact Results and Asymptotic Approximations , 2005 .

[48]  Boris Escalante-Ramírez,et al.  The Hermite transform as an efficient model for local image analysis: An application to medical image fusion , 2008, Comput. Electr. Eng..

[49]  S. Bhatnagar,et al.  Scale sensitive deconvolution of interferometric images - I. Adaptive Scale Pixel (Asp) decomposition , 2004 .

[50]  Stephanie Thalberg,et al.  Interferometry And Synthesis In Radio Astronomy , 2016 .

[51]  J. Högbom,et al.  APERTURE SYNTHESIS WITH A NON-REGULAR DISTRIBUTION OF INTERFEROMETER BASELINES. Commentary , 1974 .

[52]  J. Anderson,et al.  LOFAR sparse image reconstruction , 2014, 1406.7242.

[53]  H. Malonek,et al.  A unified matrix approach to the representation of Appell polynomials , 2014, 1406.1444.

[54]  F. Schwab,et al.  Relaxing the isoplanatism assumption in self-calibration; applications to low-frequency radio interferometry , 1984 .

[55]  A. Réfrégier Shapelets: I. a method for image analysis , 2001, astro-ph/0105178.