Real time traversability analysis to enhance rough terrain navigation for an 6 × 6 autonomous vehicle

An autonomous vehicle should be driven at a velocity that allows it to feasibly track a predetermined path. For autonomous vehicles that require high velocity navigation over rough terrain, the driving velocity should be calculated in real time and maximized without exceeding any safety limits. In order to compute the driving velocity in real time, several factors including path curvature, terrain characteristics, vehicle dynamics, and interaction between vehicle and terrain need to be taken into account, along with real time constraints. In this study, a method based on real time traversability analysis is proposed to determine the maximum permissible velocity at which an autonomous vehicle can traverse rough terrain with guaranteed stability. Simulations validated the proposed method for a 6 × 6 autonomous vehicle with articulated suspension traveling over rough terrain.