Multiband Galaxy Morphologies for CLASH: A Convolutional Neural Network Transferred from CANDELS

We present visual-like morphologies over 16 photometric bands, from ultra-violet to near infrared, for 8,412 galaxies in the Cluster Lensing And Supernova survey with Hubble (CLASH) obtained by a convolutional neural network (CNN) model. Our model follows the CANDELS main morphological classification scheme, obtaining the probability for each galaxy at each CLASH band of being spheroid, disk, irregular, point source, or unclassifiable. Our catalog contains morphologies for each galaxy with Hmag < 24.5 in every filter where the galaxy is observed. We trained an initial CNN model using approximately 7,500 expert eyeball labels from The Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS). We created eyeball labels for 100 randomly selected galaxies per each of the 16-filters set of CLASH (1,600 galaxy images in total), where each image was classified by at least five of us. We use these labels to fine-tune the network in order to accurately predict labels for the CLASH data and to evaluate the performance of our model. We achieve a root-mean-square error of 0.0991 on the test set. We show that our proposed fine-tuning technique reduces the number of labeled images needed for training, as compared to directly training over the CLASH data, and achieves a better performance. This approach is very useful to minimize eyeball labeling efforts when classifying unlabeled data from new surveys. This will become particularly useful for massive datasets such as the ones coming from near future surveys such as EUCLID or the LSST. Our catalog consists of prediction of probabilities for each galaxy by morphology in their different bands and is made publicly available at this http URL

[1]  Ivan Laptev,et al.  Learning and Transferring Mid-level Image Representations Using Convolutional Neural Networks , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[2]  B. Garilli,et al.  MASS AND ENVIRONMENT AS DRIVERS OF GALAXY EVOLUTION IN SDSS AND zCOSMOS AND THE ORIGIN OF THE SCHECHTER FUNCTION , 2010, 1003.4747.

[3]  Peter Chapman,et al.  Environmental change in moorland landscapes , 2007 .

[4]  N. R. Napolitano,et al.  Finding strong gravitational lenses in the Kilo Degree Survey with Convolutional Neural Networks , 2017, 1702.07675.

[5]  Kirpal Nandra,et al.  CANDELS MULTI-WAVELENGTH CATALOGS: SOURCE DETECTION AND PHOTOMETRY IN THE GOODS-SOUTH FIELD , 2013, 1308.4405.

[6]  Roberto G. Abraham,et al.  A CATALOG OF DETAILED VISUAL MORPHOLOGICAL CLASSIFICATIONS FOR 14,034 GALAXIES IN THE SLOAN DIGITAL SKY SURVEY , 2010, 1001.2401.

[7]  O. Lahav,et al.  THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH HUBBLE: AN OVERVIEW , 2011, 1106.3328.

[8]  Matthew A. Bershady,et al.  The asymmetry of galaxies: physical morphology for nearby and high redshift galaxies , 1999 .

[9]  Joeri van Leeuwen,et al.  Applying Deep Learning to Fast Radio Burst Classification , 2018, The Astronomical Journal.

[10]  A. Aniyan,et al.  Classifying Radio Galaxies with the Convolutional Neural Network , 2017, 1705.03413.

[11]  O. Lahav,et al.  CLASH: accurate photometric redshifts with 14 HST bands in massive galaxy cluster cores , 2017, 1705.02265.

[12]  Ping Guo,et al.  Pulsar Candidate Identification with Artificial Intelligence Techniques , 2017, ArXiv.

[13]  Santiago,et al.  A CATALOG OF VISUAL-LIKE MORPHOLOGIES IN THE 5 CANDELS FIELDS USING DEEP LEARNING , 2015, 1509.05429.

[14]  L. Guzzo,et al.  The Cosmic Evolution Survey (COSMOS): Overview* , 2006, astro-ph/0612305.

[15]  Luca Maria Gambardella,et al.  Max-pooling convolutional neural networks for vision-based hand gesture recognition , 2011, 2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA).

[16]  Marc Huertas-Company,et al.  Revisiting the Hubble sequence in the SDSS DR7 spectroscopic sample: a publicly available Bayesian automated classification , 2010, 1010.3018.

[17]  A. Oemler,et al.  Evolution of galaxies in clusters. I. ISIT photometry of Cl 0024 + 1654 and 3C 295 , 1978 .

[18]  Pablo A. Estévez,et al.  Deep-HiTS: Rotation Invariant Convolutional Neural Network for Transient Detection , 2017, ArXiv.

[19]  Sander Dieleman,et al.  Rotation-invariant convolutional neural networks for galaxy morphology prediction , 2015, ArXiv.

[20]  A. Finoguenov,et al.  EARLY-TYPE GALAXIES AT z = 1.3. I. THE LYNX SUPERCLUSTER: CLUSTER AND GROUPS AT z = 1.3. MORPHOLOGY AND COLOR–MAGNITUDE RELATION , 2012, 1205.1785.

[21]  Sebastian Ruder,et al.  An overview of gradient descent optimization algorithms , 2016, Vestnik komp'iuternykh i informatsionnykh tekhnologii.

[22]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[23]  Evolution of Galaxy morphologies in Clusters , 2000, astro-ph/0008195.

[24]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[25]  Qiang Yang,et al.  A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[26]  I. Smail,et al.  The All-Wavelength Extended Groth Strip International Survey (AEGIS) Data Sets , 2006, astro-ph/0607355.

[27]  J. Trump,et al.  CANDELS VISUAL CLASSIFICATIONS: SCHEME, DATA RELEASE, AND FIRST RESULTS , 2014, 1401.2455.

[28]  Jr.,et al.  Evolution since z = 0.5 of the Morphology-Density Relation for Clusters of Galaxies , 1997, astro-ph/9707232.

[29]  I. Smail,et al.  Morphological Studies of the Galaxy Populations in Distant “Butcher-Oemler” Clusters with the Hubble Space Telescope. II. AC 103, AC 118, and AC 114 at z = 0.31 , 1997, astro-ph/9711019.

[30]  R. Bouwens,et al.  The Morphology-Density Relation in z ~ 1 Clusters , 2005, astro-ph/0501224.

[31]  A. Dressler Galaxy morphology in rich clusters: Implications for the formation and evolution of galaxies , 1980 .

[32]  B. J. Weiner,et al.  accepted to the Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE EVOLUTION OF GALAXY MERGERS AND MORPHOLOGY AT Z < 1.2 IN THE EXTENDED GROTH STRIP , 2007 .

[33]  J. Laurence pritchard Monthly Notices , 1941, The Journal of the Royal Aeronautical Society.

[34]  H. Hoekstra,et al.  THE GEMINI CLUSTER ASTROPHYSICS SPECTROSCOPIC SURVEY (GCLASS): THE ROLE OF ENVIRONMENT AND SELF-REGULATION IN GALAXY EVOLUTION AT z ∼ 1 , 2011, 1112.3655.

[35]  H. D. S'anchez,et al.  Improving galaxy morphologies for SDSS with Deep Learning , 2017, 1711.05744.

[36]  M. Giavalisco,et al.  The Great Observatories Origins Deep Survey: Initial results from optical and near-infrared imaging , 2003, astro-ph/0309105.

[37]  M. Huertas-Company,et al.  The morphological transformation of red sequence galaxies in clusters since z ∼ 1 , 2017, 1707.00751.

[38]  C. Lintott,et al.  Galaxy Zoo: Quantitative visual morphological classifications for 48 000 galaxies from CANDELS , 2016, 1610.03070.

[39]  Christopher J. Miller,et al.  THE XMM CLUSTER SURVEY: GALAXY MORPHOLOGIES AND THE COLOR–MAGNITUDE RELATION IN XMMXCS J2215.9 − 1738 AT z = 1.46 , 2009, 0903.1731.

[40]  Christopher J. Shallue,et al.  Identifying Exoplanets with Deep Learning: A Five-planet Resonant Chain around Kepler-80 and an Eighth Planet around Kepler-90 , 2017, 1712.05044.

[41]  Guoqiang Peter Zhang,et al.  Neural networks for classification: a survey , 2000, IEEE Trans. Syst. Man Cybern. Part C.

[42]  S. Ravindranath,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.

[43]  N. R. Tanvir,et al.  Galaxy morphology to I = 25 mag in the Hubble Deep Field , 1996 .

[44]  O. Fèvre,et al.  A robust morphological classification of high-redshift galaxies using support vector machines on seeing limited images I. Method description , 2007, 0709.1359.

[45]  J. Brinkmann,et al.  The environmental dependence of the relations between stellar mass, structure, star formation and nuclear activity in galaxies , 2004, astro-ph/0402030.

[46]  Kunihiko Fukushima,et al.  Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position , 1980, Biological Cybernetics.

[47]  C. Lintott,et al.  Galaxy Zoo: morphologies derived from visual inspection of galaxies from the Sloan Digital Sky Survey , 2008, 0804.4483.

[48]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[49]  R. Nichol,et al.  The dependence of star formation history and internal structure on stellar mass for 105 low‐redshift galaxies , 2002, astro-ph/0205070.

[50]  R. Pelló,et al.  The morphological content of 10 EDisCS clusters at 0.5 < z < 0.8 , 2007, astro-ph/0701788.

[51]  M. Irwin,et al.  The UKIRT Infrared Deep Sky Survey (UKIDSS) , 2006, astro-ph/0604426.