Two-loop amplitudes for Higgs plus jet production involving a modified trilinear Higgs coupling

A bstractWe calculate the contributions to the two-loop scattering amplitudes h → gg, h → ggg and h→qq¯g$$ h\to q\overline{q}g $$ that arise from a modified trilinear Higgs coupling λ. Analytic expressions are obtained by performing an asymptotic expansion near the limit of infinitely heavy top quark. The calculated amplitudes are necessary to study the impact of the Oλ$$ \mathcal{O}\left(\lambda \right) $$ corrections to the transverse momentum distributions (pT,h) in single-Higgs production at hadron colliders for low and moderate values of pT,h.

[1]  K. Melnikov,et al.  Two-loop amplitudes for $q g \to H q$ and $q \bar{q} \to H g$ mediated by a nearly massless quark , 2017, 1702.00426.

[2]  J. Fleischer,et al.  06 36 3 v 2 1 5 Fe b 19 95 O ( αα 2 s ) correction to the electroweak ρ parameter , 2008 .

[3]  Christophe Grojean,et al.  A global view on the Higgs self-coupling , 2017, 1704.01953.

[4]  Fabio Maltoni,et al.  Constraining the Higgs self-couplings at e+e− colliders , 2018, Journal of High Energy Physics.

[5]  T. Hahn,et al.  Generating Feynman Diagrams and Amplitudes with FeynArts 3 , 2001 .

[6]  Fabio Maltoni,et al.  Trilinear Higgs coupling determination via single-Higgs differential measurements at the LHC , 2017, 1709.08649.

[7]  Fabio Maltoni,et al.  Probing the Higgs self coupling via single Higgs production at the LHC , 2016, 1607.04251.

[8]  T. Gehrmann,et al.  Two-loop QCD corrections to the helicity amplitudes for H → 3 partons , 2011, 1112.3554.

[9]  O. Tarasov AN ALGORITHM FOR SMALL MOMENTUM EXPANSION OF FEYNMAN DIAGRAMS , 1995, hep-ph/9505277.

[10]  Results and techniques of multi-loop calculations , 2002, hep-ph/0201075.

[11]  R. N. Lee LiteRed 1.4: a powerful tool for reduction of multiloop integrals , 2013, 1310.1145.

[12]  Connection between Feynman integrals having different values of the space-time dimension. , 1996, Physical review. D, Particles and fields.

[13]  M. Steinhauser MATAD: a program package for the computation of MAssive TADpoles , 2000 .

[14]  Zhen Liu,et al.  A global view on the Higgs self-coupling at lepton colliders , 2017, Journal of High Energy Physics.

[15]  Marco Fedele,et al.  Constraints on the trilinear Higgs self coupling from precision observables , 2017, Journal of High Energy Physics.

[16]  Andreas Maier,et al.  Electroweak oblique parameters as a probe of the trilinear Higgs boson self-interaction , 2017, 1702.07678.

[17]  V. Smirnov Applied Asymptotic Expansions in Momenta and Masses , 2001 .

[18]  Martin Gorbahn,et al.  Indirect probes of the trilinear Higgs coupling: gg → h and h → γγ , 2016 .

[19]  J. Fleischer,et al.  O (aas2) correction to the electroweak ? parameter , 1994, hep-ph/9406363.

[20]  Giulia Zanderighi,et al.  Constraints on the trilinear Higgs coupling from vector boson fusion and associated Higgs production at the LHC , 2016, Journal of High Energy Physics.

[21]  O. Tarasov Generalized recurrence relations for two-loop propagator integrals with arbitrary masses , 1997, hep-ph/9703319.

[22]  M. McCullough An Indirect Model-Dependent Probe of the Higgs Self-Coupling , 2013, 1312.3322.

[23]  Ulrich Haisch,et al.  Constraints on the quartic Higgs self-coupling from double-Higgs production at future hadron colliders , 2018, Journal of High Energy Physics.

[24]  J.A.M. Vermaseren,et al.  New features of FORM , 2000 .

[25]  K. Melnikov,et al.  Two-loop gg → Hg amplitude mediated by a nearly massless quark , 2016, Journal of High Energy Physics.