Structure and bonding in amorphous iron carbide thin films

We investigate the amorphous structure, chemical bonding, and electrical properties of magnetron sputtered Fe1−xCx (0.21 ⩽ x ⩽ 0.72) thin films. X-ray, electron diffraction and transmission electron microscopy show that the Fe1−xCx films are amorphous nanocomposites, consisting of a two-phase domain structure with Fe-rich carbidic FeCy, and a carbon-rich matrix. Pair distribution function analysis indicates a close-range order similar to those of crystalline Fe3C carbides in all films with additional graphene-like structures at high carbon content (71.8 at% C). From x-ray photoelectron spectroscopy measurements, we find that the amorphous carbidic phase has a composition of 15–25 at% carbon that slightly increases with total carbon content. X-ray absorption spectra exhibit an increasing number of unoccupied 3d states and a decreasing number of C 2p states as a function of carbon content. These changes signify a systematic redistribution in orbital occupation due to charge-transfer effects at the domain-size-dependent carbide/matrix interfaces. The four-point probe resistivity of the Fe1−xCx films increases exponentially with carbon content from ∼200 μΩ cm (x = 0.21) to ∼1200 μΩ cm (x = 0.72), and is found to depend on the total carbon content rather than the composition of the carbide. Our findings open new possibilities for modifying the resistivity of amorphous thin film coatings based on transition metal carbides through the control of amorphous domain structures.

[1]  U. Jansson,et al.  Crystallization characteristics and chemical bonding properties of nickel carbide thin film nanocomposites , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[2]  U. Jansson,et al.  Sputter deposition of transition-metal carbide films - A critical review from a chemical perspective , 2013 .

[3]  S. Kaciulis Spectroscopy of carbon: from diamond to nitride films , 2012 .

[4]  L. Nyholm,et al.  Deposition and characterization of magnetron sputtered amorphous Cr–C films , 2012 .

[5]  D R G Mitchell,et al.  RDFTools: A software tool for quantifying short‐range ordering in amorphous materials , 2012, Microscopy research and technique.

[6]  E. Bauer-grosse Nucleation and Growth of Triangular Prismatic Iron Carbides in Amorphous Films by In Situ Transmission Electron Microscopy , 2011 .

[7]  Evan Ma,et al.  Atomic-level structure and structure–property relationship in metallic glasses , 2011 .

[8]  J. Ghanbaja,et al.  Structural characterization of Fe–C coatings prepared by reactive triode-magnetron sputtering , 2010 .

[9]  M. Sluiter,et al.  Stability, structure and electronic properties of γ-Fe23C6 from first-principles theory , 2010 .

[10]  M. Ferenets,et al.  Thin Solid Films , 2010 .

[11]  P. Schaaf,et al.  Formation and characterization of NaCl-type FeC , 2009 .

[12]  Jianguo Wang,et al.  Structure and stability of Fe4C bulk and surfaces: A density functional theory study , 2007 .

[13]  E. Bauer-grosse,et al.  Glass-forming range and glass thermal stability in binary 3d TM–C systems , 2007 .

[14]  R. Ahuja,et al.  Electronic structure and chemical bonding in Ti2AlC investigated by soft x-ray emission spectroscopy , 2006, 1111.2910.

[15]  L. Hultman Synthesis, Structure, and Properties of Super-Hard Superlattice Coatings , 2006 .

[16]  Q. Hou,et al.  DEPOSITION OF M—C (M = Cr, Mn, Fe) FILMS BY MAGNETRON SPUTTERING , 2005 .

[17]  M. Magnuson,et al.  Spin transition in LaCoO3 investigated by resonant soft X-ray emission spectroscopy , 2004, 1112.3406.

[18]  E. Bauer-grosse Thermal stability and crystallization studies of amorphous TM–C films , 2004 .

[19]  E. Moler,et al.  Analysis of the π* and Σ* bands of the x-ray absorption spectrum of amorphous carbon , 2001 .

[20]  K. Klementev Extraction of the fine structure from x-ray absorption spectra , 2001 .

[21]  J. Robertson,et al.  Interpretation of Raman spectra of disordered and amorphous carbon , 2000 .

[22]  K. Klementev XAFS spectroscopy. I. Extracting the fine structure from the absorption spectra , 2000, physics/0003086.

[23]  M. Magnuson,et al.  ENERGY DEPENDENCE OF CU L2,3 SATELLITES USING SYNCHROTRON EXCITED X-RAY-EMISSION SPECTROSCOPY , 1997, 1201.0933.

[24]  Sven Ulrich,et al.  Raman spectroscopy on amorphous carbon films , 1996 .

[25]  A. I. Maaroof,et al.  Onset of electrical conduction in Pt and Ni films , 1994 .

[26]  Pease L3- to L2-intensity ratios in soft-x-ray valence-band emission spectra of 3d transition metals. , 1992, Physical review. B, Condensed matter.

[27]  Salvatore Scaglione,et al.  Evaluation of the sp2/sp3 ratio in amorphous carbon structure by XPS and XAES , 1991 .

[28]  G. Caër,et al.  Structural changes of amorphous Fe1−xCx alloys at x & 0.32☆ , 1988 .

[29]  G. Caër,et al.  Structural evolution of sputtered amorphous Fe1-xCx films for 0˙19 ≤ x ≤ 0˙49 , 1987 .

[30]  Lawrence H. Bennett,et al.  Binary alloy phase diagrams , 1986 .

[31]  E. Bauer-Grosse,et al.  Etude des défauts de structure dans le carbure defer métastable “Fe7C3” formé lors de la cristallisation d'alliages amorphes fer-carbone , 1981 .