Solitary waves in the nonlinear Schrödinger equation with spatially modulated Bessel nonlinearity

Using multivariate self-similarity transformation, we construct explicit spatial bright and dark solitary wave solutions of the generalized nonlinear Schrodinger equation with spatially Bessel-modulated nonlinearity and an external potential. Special kinds of explicit solutions, such as periodically breathing bright and dark solitary waves, are discussed in detail. The stability of these solutions is verified by means of direct numerical simulation.

[1]  Miceli,et al.  Diffraction-free beams. , 1987, Physical review letters.

[2]  K. Dholakia,et al.  Bessel beams: Diffraction in a new light , 2005 .

[3]  H. H. Chen,et al.  Nonlinear wave and soliton propagation in media with arbitrary inhomogeneities , 1978 .

[4]  M. Belić,et al.  Exact spatial soliton solutions of the two-dimensional generalized nonlinear Schrödinger equation with distributed coefficients , 2008 .

[5]  A M Kamchatnov,et al.  Adiabatic dynamics of periodic waves in Bose-Einstein condensates with time dependent atomic scattering length. , 2003, Physical review letters.

[6]  Gadi Fibich,et al.  Bound states of nonlinear Schrödinger equations with a periodic nonlinear microstructure , 2006 .

[7]  Dai Chao-qing,et al.  Spatiotemporal self-similar solutions for the nonautonomous (3+1)-dimensional cubic-quintic Gross-Pitaevskii equation , 2012 .

[8]  Y. Kivshar,et al.  Dark solitons on backgrounds of finite extent , 1994 .

[9]  Gabriel F. Calvo,et al.  Exact solutions for the quintic nonlinear Schrödinger equation with time and space modulated nonlinearities and potentials , 2009 .

[10]  Yuji Kodama,et al.  Solitons in optical communications , 1995 .

[11]  Yuri S. Kivshar,et al.  Optical Solitons: From Fibers to Photonic Crystals , 2003 .

[12]  M. Hussein,et al.  Solitons of two-component Bose–Einstein condensates modulated in space and time , 2010, 1001.2130.

[13]  D. Bazeia,et al.  Modulation of breathers in cigar-shaped Bose–Einstein condensates , 2009, 0912.4011.

[14]  A. Hasegawa,et al.  Nonautonomous matter-wave solitons near the Feshbach resonance , 2010 .

[15]  J. Durnin Exact solutions for nondiffracting beams. I. The scalar theory , 1987 .

[16]  W. Ketterle,et al.  Bose-Einstein condensation , 1997 .

[17]  L. Torner,et al.  Light bullets in Bessel optical lattices with spatially modulated nonlinearity. , 2009, Optics express.

[18]  Dun Zhao,et al.  Engineering integrable nonautonomous nonlinear Schrödinger equations. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Hasegawa,et al.  Novel soliton solutions of the nonlinear Schrodinger equation model , 2000, Physical review letters.

[20]  Milivoj Belić,et al.  Analytical light bullet solutions to the generalized (3+1)-dimensional nonlinear Schrödinger equation. , 2008, Physical review letters.

[21]  D. Bazeia,et al.  Solitons with cubic and quintic nonlinearities modulated in space and time. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  M. Belić,et al.  Self-Similar Hermite–Gaussian Spatial Solitons in Two-Dimensional Nonlocal Nonlinear Media , 2010 .

[23]  Víctor M. Pérez-García,et al.  Similarity transformations for nonlinear Schrödinger equations with time-dependent coefficients , 2005, nlin/0512061.

[24]  C. Sulem,et al.  The nonlinear Schrödinger equation : self-focusing and wave collapse , 2004 .

[25]  B. Malomed,et al.  Double parametric resonance for matter-wave solitons in a time-modulated trap. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Juan Belmonte-Beitia,et al.  Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities. , 2006, Physical review letters.

[27]  F. Dalfovo,et al.  Theory of Bose-Einstein condensation in trapped gases , 1998, cond-mat/9806038.

[28]  Alternative integrable equations of nonlinear optics. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[29]  M. Belić,et al.  Localized nonlinear wavepackets with radial–azimuthal modulated nonlinearity and an external potential , 2011 .

[30]  Mattias Marklund,et al.  Nonlinear Bessel beams , 2003 .

[31]  M. Belić,et al.  Traveling and solitary wave solutions to the one-dimensional Gross-Pitaevskii equation. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  Z. Bouchal,et al.  Nondiffracting Optical Beams: Physical Properties, Experiments, and Applications , 2003 .

[33]  Chuan-Sheng Liu,et al.  Solitons in nonuniform media , 1976 .

[34]  Antonio Degasperis,et al.  Coupled nonlinear evolution equations solvable via the inverse spectral transform, and solitons that come back: the boomeron , 1976 .

[35]  Konotop,et al.  Dynamics and interaction of solitons on an integrable inhomogeneous lattice. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[36]  Akira Hasegawa,et al.  Nonautonomous solitons in external potentials. , 2007, Physical review letters.

[37]  Juan Belmonte-Beitia,et al.  Localized nonlinear waves in systems with time- and space-modulated nonlinearities. , 2008, Physical review letters.

[38]  Milivoj Belić,et al.  Traveling wave and soliton solutions of coupled nonlinear Schrödinger equations with harmonic potential and variable coefficients. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  R. N. Thurston,et al.  Dark optical solitons with finite-width background pulses , 1989 .

[40]  M. Belić,et al.  Light bullets in the spatiotemporal nonlinear Schrodinger equation with a variable negative diffraction coefficient , 2011 .