Google matrix of the world trade network

Using the United Nations Commodity Trade Statistics Database [this http URL] we construct the Google matrix of the world trade network and analyze its properties for various trade commodities for all countries and all available years from 1962 to 2009. The trade flows on this network are classified with the help of PageRank and CheiRank algorithms developed for the World Wide Web and other large scale directed networks. For the world trade this ranking treats all countries on equal democratic grounds independent of country richness. Still this method puts at the top a group of industrially developed countries for trade in {\it all commodities}. Our study establishes the existence of two solid state like domains of rich and poor countries which remain stable in time, while the majority of countries are shown to be in a gas like phase with strong rank fluctuations. A simple random matrix model provides a good description of statistical distribution of countries in two-dimensional rank plane. The comparison with usual ranking by export and import highlights new features and possibilities of our approach.

[1]  Alexei Chepelianskii,et al.  Towards physical laws for software architecture , 2010, ArXiv.

[2]  Paul Krugman,et al.  International Economics: Theory and Policy , 1988 .

[3]  Dima Shepelyansky,et al.  Google matrix and Ulam networks of intermittency maps , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Dima Shepelyansky,et al.  Universal emergence of PageRank , 2011, ArXiv.

[5]  Werner R. W. Scheinhardt,et al.  Probabilistic Relation between In-Degree and PageRank , 2007, WAW.

[6]  Eli Upfal,et al.  Using PageRank to Characterize Web Structure , 2002, Internet Math..

[7]  Dima Shepelyansky,et al.  Two-dimensional ranking of Wikipedia articles , 2010, ArXiv.

[8]  D L Shepelyansky,et al.  Google matrix, dynamical attractors, and Ulam networks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  S. Ulam A collection of mathematical problems , 1960 .

[10]  Konstantin Avrachenkov,et al.  A Singular Perturbation Approach for Choosing the PageRank Damping Factor , 2008, Internet Math..

[11]  G. M. Meier International Economics: The Theory of Policy , 1980 .

[12]  G. Fagiolo,et al.  The evolution of the world trade web: a weighted-network analysis , 2008 .

[13]  Amy Nicole Langville,et al.  Google's PageRank and beyond - the science of search engine rankings , 2006 .

[14]  George Kingsley Zipf,et al.  Human behavior and the principle of least effort , 1949 .

[15]  Giorgio Fagiolo,et al.  Multinetwork of international trade: a commodity-specific analysis. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  D. Garlaschelli,et al.  Structure and evolution of the world trade network , 2005, physics/0502066.

[17]  Giorgio Fagiolo,et al.  World-trade web: topological properties, dynamics, and evolution. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[19]  J. F. C. Kingman,et al.  Dynamic Probabilistic Systems. Volume 1: Markov Models. Volume 2: Semi‐Markov and Decision Processes , 1972 .

[20]  Michael W. Deem,et al.  Structure and Response in the World Trade Network , 2010, Physical review letters.

[21]  Dániel Fogaras,et al.  Where to Start Browsing the Web? , 2003, IICS.

[22]  Debora Donato,et al.  Large scale properties of the Webgraph , 2004 .

[23]  Dima Shepelyansky,et al.  Toward two-dimensional search engines , 2011, ArXiv.

[24]  Marián Boguñá,et al.  Patterns of dominant flows in the world trade web , 2007, 0704.1225.

[25]  Vagelis Hristidis,et al.  Authority-based keyword search in databases , 2008, TODS.

[26]  Giorgio Fagiolo,et al.  Rewiring World Trade. Part II: A Weighted Network Analysis , 2011, ArXiv.

[27]  S. Redner Citation statistics from 110 years of physical review , 2005, physics/0506056.

[28]  L. Tajoli,et al.  The World Trade Network , 2011 .

[29]  Dima Shepelyansky,et al.  Fractal Weyl law for Linux Kernel architecture , 2010, ArXiv.

[30]  Dima Shepelyansky,et al.  Spectral properties of the Google matrix of the World Wide Web and other directed networks , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  M. Gell-Mann,et al.  Physics Today. , 1966, Applied optics.

[32]  D. Shepelyansky,et al.  Ulam method and fractal Weyl law for Perron-Frobenius operators , 2009, 0912.5083.

[33]  Klaus M. Frahm,et al.  Ulam method for the Chirikov standard map , 2010, 1004.1349.

[34]  E. Ott Chaos in Dynamical Systems: Contents , 1993 .

[35]  Santo Fortunato,et al.  Diffusion of scientific credits and the ranking of scientists , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  Paul B. Slater Petroleum Trade in 1970: An Exploratory Analysis , 1975, IEEE Transactions on Systems, Man, and Cybernetics.